mobile applications
Recently Published Documents


TOTAL DOCUMENTS

5538
(FIVE YEARS 2941)

H-INDEX

63
(FIVE YEARS 25)

2022 ◽  
Vol 29 (1) ◽  
pp. 1-32
Author(s):  
Zilong Liu ◽  
Xuequn Wang ◽  
Xiaohan Li ◽  
Jun Liu

Although individuals increasingly use mobile applications (apps) in their daily lives, uncertainty exists regarding how the apps will use the information they request, and it is necessary to protect users from privacy-invasive apps. Recent literature has begun to pay much attention to the privacy issue in the context of mobile apps. However, little attention has been given to designing the permission request interface to reduce individuals’ perceived uncertainty and to support their informed decisions. Drawing on the principal–agent perspective, our study aims to understand the effects of permission justification, certification, and permission relevance on users’ perceived uncertainty, which in turn influences their permission authorization. Two studies were conducted with vignettes. Our results show that certification and permission relevance indeed reduce users’ perceived uncertainty. Moreover, permission relevance moderates the relationship between permission justification and perceived uncertainty. Implications for theory and practice are discussed.


2022 ◽  
Vol 31 (2) ◽  
pp. 1-30
Author(s):  
Fahimeh Ebrahimi ◽  
Miroslav Tushev ◽  
Anas Mahmoud

Modern application stores enable developers to classify their apps by choosing from a set of generic categories, or genres, such as health, games, and music. These categories are typically static—new categories do not necessarily emerge over time to reflect innovations in the mobile software landscape. With thousands of apps classified under each category, locating apps that match a specific consumer interest can be a challenging task. To overcome this challenge, in this article, we propose an automated approach for classifying mobile apps into more focused categories of functionally related application domains. Our aim is to enhance apps visibility and discoverability. Specifically, we employ word embeddings to generate numeric semantic representations of app descriptions. These representations are then classified to generate more cohesive categories of apps. Our empirical investigation is conducted using a dataset of 600 apps, sampled from the Education, Health&Fitness, and Medical categories of the Apple App Store. The results show that our classification algorithms achieve their best performance when app descriptions are vectorized using GloVe, a count-based model of word embeddings. Our findings are further validated using a dataset of Sharing Economy apps and the results are evaluated by 12 human subjects. The results show that GloVe combined with Support Vector Machines can produce app classifications that are aligned to a large extent with human-generated classifications.


2022 ◽  
Vol 30 (3) ◽  
pp. 0-0

With the advent of the 5G network era, the convenience of mobile smartphones has become increasingly prominent, the use of mobile applications has become wider and wider, and the number of mobile applications. However, the privacy of mobile applications and the security of users' privacy information are worrying. This article aims to study the ratings of data and machine learning on the privacy security of mobile applications, and uses the experiments in this article to conduct data collection, data analysis, and summary research. This paper experimentally establishes a machine learning model to realize the prediction of privacy scores of Android applications. The establishment of this model is based on the intent of using sensitive permissions in the application and related metadata. It is to create a regression function that can implement the mapping of applications to score . Experimental data shows that the feature vector prediction model can uniquely be used to represent the actual usage and scheme of a system's specific permissions for the application.


2022 ◽  
Vol 30 (3) ◽  
pp. 1-15
Author(s):  
Bin Pan ◽  
Hongxia Guo ◽  
Xing You ◽  
Li Xu

With the advent of the 5G network era, the convenience of mobile smartphones has become increasingly prominent, the use of mobile applications has become wider and wider, and the number of mobile applications. However, the privacy of mobile applications and the security of users' privacy information are worrying. This article aims to study the ratings of data and machine learning on the privacy security of mobile applications, and uses the experiments in this article to conduct data collection, data analysis, and summary research. This paper experimentally establishes a machine learning model to realize the prediction of privacy scores of Android applications. The establishment of this model is based on the intent of using sensitive permissions in the application and related metadata. It is to create a regression function that can implement the mapping of applications to score . Experimental data shows that the feature vector prediction model can uniquely be used to represent the actual usage and scheme of a system's specific permissions for the application.


Automatic environmental monitoring is a field that encompasses several scientific practices for the assessment of risks that may negatively impact a given environment, such as the forest. A forest is a natural environment that hosts various forms of plant and animal life, so preserving the forest is a top priority. To this end, the authors of this paper will focus on the development of an intelligent system for the early detection of forest fires, based on an IoT solution. This latter will thus facilitate the exploitation of the functionalities offered by the Cloud and mobile applications. Detecting and predicting forest fires with accuracy is a difficult task that requires machine learning and an in-depth analysis of environmental conditions. This leads the authors to adopt the forward neural network algorithm by highlighting its contribution through real experiments, performed on the prototype developed in this paper.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 667
Author(s):  
Ahmed Saad Elkorany ◽  
Alyaa Nehru Mousa ◽  
Sarosh Ahmad ◽  
Demyana Adel Saleeb ◽  
Adnan Ghaffar ◽  
...  

Antennas in wireless sensor networks (WSNs) are characterized by the enhanced capacity of the network, longer range of transmission, better spatial reuse, and lower interference. In this paper, we propose a planar patch antenna for mobile communication applications operating at 1.8, 3.5, and 5.4 GHz. A planar microstrip patch antenna (MPA) consists of two F-shaped resonators that enable operations at 1.8 and 3.5 GHz while operation at 5.4 GHz is achieved when the patch is truncated from the middle. The proposed planar patch is printed on a low-cost FR-4 substrate that is 1.6 mm in thickness. The equivalent circuit model is also designed to validate the reflection coefficient of the proposed antenna with the S11 obtained from the circuit model. It contains three RLC (resistor–inductor–capacitor) circuits for generating three frequency bands for the proposed antenna. Thereby, we obtained a good agreement between simulation and measurement results. The proposed antenna has an elliptically shaped radiation pattern at 1.8 and 3.5 GHz, while the broadside directional pattern is obtained at the 5.4 GHz frequency band. At 1.8, 3.5, and 5.4 GHz, the simulated peak realized gains of 2.34, 5.2, and 1.42 dB are obtained and compared to the experimental peak realized gains of 2.22, 5.18, and 1.38 dB at same frequencies. The results indicate that the proposed planar patch antenna can be utilized for mobile applications such as digital communication systems (DCS), worldwide interoperability for microwave access (WiMAX), and wireless local area networks (WLAN).


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 660
Author(s):  
Marios Avgeris ◽  
Dimitrios Spatharakis ◽  
Dimitrios Dechouniotis ◽  
Aris Leivadeas ◽  
Vasileios Karyotis ◽  
...  

Mobile applications are progressively becoming more sophisticated and complex, increasing their computational requirements. Traditional offloading approaches that use exclusively the Cloud infrastructure are now deemed unsuitable due to the inherent associated delay. Edge Computing can address most of the Cloud limitations at the cost of limited available resources. This bottleneck necessitates an efficient allocation of offloaded tasks from the mobile devices to the Edge. In this paper, we consider a task offloading setting with applications of different characteristics and requirements, and propose an optimal resource allocation framework leveraging the amalgamation of the edge resources. To balance the trade-off between retaining low total energy consumption, respecting end-to-end delay requirements and load balancing at the Edge, we additionally introduce a Markov Random Field based mechanism for the distribution of the excess workload. The proposed approach investigates a realistic scenario, including different categories of mobile applications, edge devices with different computational capabilities, and dynamic wireless conditions modeled by the dynamic behavior and mobility of the users. The framework is complemented with a prediction mechanism that facilitates the orchestration of the physical resources. The efficiency of the proposed scheme is evaluated via modeling and simulation and is shown to outperform a well-known task offloading solution, as well as a more recent one.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Lydia Trippler ◽  
Mohammed Nassor Ali ◽  
Shaali Makame Ame ◽  
Said Mohammed Ali ◽  
Fatma Kabole ◽  
...  

Abstract Background Fine-scale mapping of schistosomiasis to guide micro-targeting of interventions will gain importance in elimination settings, where the heterogeneity of transmission is often pronounced. Novel mobile applications offer new opportunities for disease mapping. We provide a practical introduction and documentation of the strengths and shortcomings of GPS-based household identification and participant recruitment using tablet-based applications for fine-scale schistosomiasis mapping at sub-district level in a remote area in Pemba, Tanzania. Methods A community-based household survey for urogenital schistosomiasis assessment was conducted from November 2020 until February 2021 in 20 small administrative areas in Pemba. For the survey, 1400 housing structures were prospectively and randomly selected from shapefile data. To identify pre-selected structures and collect survey-related data, field enumerators searched for the houses’ geolocation using the mobile applications Open Data Kit (ODK) and MAPS.ME. The number of inhabited and uninhabited structures, the median distance between the pre-selected and recorded locations, and the dropout rates due to non-participation or non-submission of urine samples of sufficient volume for schistosomiasis testing was assessed. Results Among the 1400 randomly selected housing structures, 1396 (99.7%) were identified by the enumerators. The median distance between the pre-selected and recorded structures was 5.4 m. A total of 1098 (78.7%) were residential houses. Among them, 99 (9.0%) were dropped due to continuous absence of residents and 40 (3.6%) households refused to participate. In 797 (83.1%) among the 959 participating households, all eligible household members or all but one provided a urine sample of sufficient volume. Conclusions The fine-scale mapping approach using a combination of ODK and an offline navigation application installed on tablet computers allows a very precise identification of housing structures. Dropouts due to non-residential housing structures, absence, non-participation and lack of urine need to be considered in survey designs. Our findings can guide the planning and implementation of future household-based mapping or longitudinal surveys and thus support micro-targeting and follow-up of interventions for schistosomiasis control and elimination in remote areas. Trial registration ISRCTN, ISCRCTN91431493. Registered 11 February 2020, https://www.isrctn.com/ISRCTN91431493


2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Ashwag Albakri ◽  
Huda Fatima ◽  
Maram Mohammed ◽  
Aisha Ahmed ◽  
Aisha Ali ◽  
...  

With the presence of the Internet and the frequent use of mobile devices to send several transactions that involve personal and sensitive information, it becomes of great importance to consider the security aspects of mobile devices. And with the increasing use of mobile applications that are utilized for several purposes such as healthcare or banking, those applications have become an easy and attractive target for attackers who want to get access to mobile devices and obtain users’ sensitive information. Developing a secure application is very important; otherwise, attackers can easily exploit vulnerabilities in mobile applications which lead to serious security issues such as information leakage or injecting applications with malicious programs to access user data. In this paper, we survey the literature on application security on mobile devices, specifically mobile devices running on the Android platform, and exhibit security threats in the Android system. In addition, we study many reverse-engineering tools that are utilized to exploit vulnerabilities in applications. We demonstrate several reverse-engineering tools in terms of methodology, security holes that can be exploited, and how to use these tools to help in developing more secure applications.


Author(s):  
Arun Agarwal ◽  
Chandan Mohanta ◽  
Gourav Misra

The 5G mobile communication has now become commercially available. Furthermore, research across the globe has begun to improve the system beyond 5G and it is anticipated that 6G will deliver higher quality services and energy efficiency than 5G. The mobile network architecture needs to be redesigned to meet the requirements of the future. In the wake of the commercial rollout of the 5G model, both users and developers have realized the limitations of the system when compared to the system's original premise of being able to support the vast applications of connected devices. The article discusses the related technologies that can contribute to a robust and seamless network service. An upheaval in the use of vast mobile applications, especially those powered and managed by AI, has opened the doors to discussion on how mobile communication will evolve in the future. 6G is expected to go beyond being merely a mobile internet service provider to support the omnipresent AI services that will form the rock bed of end-to-end connected network-based devices. Moreover, the technologies that support 6G services and comprehensive research that enables this level of technical prowess have also been identified here. This paper presents a collective wide-angle vision that will facilitate a better understanding of the features of the 6G system.


Sign in / Sign up

Export Citation Format

Share Document