High Thermal Energy Storage Density LiNO3-NaNO3-KNO3-KNO2Quaternary Molten Salts for Parabolic Trough Solar Power Generation

2012 ◽  
pp. 73-84 ◽  
Author(s):  
T. Wang ◽  
D. Mantha ◽  
R. G. Reddy
Author(s):  
Anming Wang ◽  
Ming Liu ◽  
Xiaoqu Han ◽  
Jiping Liu

As concentrating solar power technologies moves to maturity progressively, large-scale solar thermal power plants have gained increasing attention. The exergetic and exergoeconomic analyses allow indicating energy degradation of the component quantitatively and establishing the monetary value to all material and energy flows. Therefore, they have strong theoretical implications to the system optimization. A thermodynamic simulation model of a 50 MW parabolic trough solar power generation system and the related exergetic and exergoeconomic analyses were presented in this paper. The results of exergetic analysis showed that the component of the lowest exergy efficiency was solar field, and the efficiency only had approximate 22%. Moreover, the exergy efficiencies of thermal energy storage and power block were about 81% and 58% respectively. According to the exergoeconomic analysis, the exergoeconomic cost of electricity and output thermal energy of solar field and thermal energy storage varied respectively in the ranges of 0.1277–0.1322 $/kWh, 0.0427–0.0503 $/kWh, and 0.0977–0.1074 $/kWh when thermal energy storage capacity ranged from 4 hours to 12 hours.


2018 ◽  
Author(s):  
Nasser Vahedi ◽  
Qasim A. Ranjha ◽  
Alparslan Oztekin

Large-scale solar power generation becomes feasible using concentrated solar power plants, as the received heat is collected at high temperatures compatible with power cycle operations. The main drawback of solar power generation is the intermittent nature of available solar irradiation, which results in a mismatch between collected heat and electrical demand. Thermal energy storage (TES) systems are the options to resolve this problem by storing excess heat during high solar irradiance and releasing at off-sun conditions. Thermochemical energy storage (TCES) systems have the potential to store the solar energy at high temperatures suitable for CSP plants’ operations because of the higher energy density of the TCES materials than those used for sensible and latent heat storage options. In TCES, the heat is stored in the form of thermo-chemical energy using an endothermic reaction and is released by carrying out the reverse exothermic reaction. TCES using cobalt oxide redox (reduction/oxidation) reaction is selected for this study because of its unique features suitable for high temperature thermal energy storage. A reactor with the cylindrical fixed bed is considered, in which air flows through the bed during charging and discharging modes. Air is used as heat transfer fluid (HTF) and as the reactant gas supplying oxygen. Transient mass and energy transport equations are solved along with reaction kinetics equations using finite element method. Charging and discharging processes are investigated. The effect of geometrical and operational parameters including the material properties on overall storage and retrieval process has been studied. It was shown that the bed porosity plays a dominant role in the reactor performance. The increase in the bed porosity improves the reactor performance for both charging and discharging mode.


2020 ◽  
Vol 160 ◽  
pp. 02005
Author(s):  
Wael Al-Kouz ◽  
Jamal Nayfeh ◽  
Alberto Boretti

The paper discusses the design options for a concentrated solar power plant in Al-Khobar, Saudi Arabia. The specific conditions, in terms of weather and sun irradiance, are considered, including sand and dust, humidity, temperature and proximity to the sea. Different real-world experiences are then considered, to understand the best design to adapt to the specific conditions. Concentrated solar power solar tower with thermal energy storage such as Crescent Dunes, or concentrated solar power solar tower without thermal energy storage but boost by natural gas combustion such as Ivanpah are disregarded for the higher costs, the performances well below the design, and the extra difficulties for the specific location such as temperatures, humidity and sand/dust that suggest the use of an enclosed trough. Concentrated solar power parabolic trough without thermal energy storage such as Genesis or Mojave, of drastically reduced cost and much better performances, do not provide however the added value of thermal energy storage and dispatchability that can make interesting Concentrated solar power vs. alternatives such as wind and solar photovoltaic. Thus, the concentrated solar power parabolic trough with thermal energy storage of Solana, of intermediate costs and best performances, albeit slightly lower than the design values, is selected. This design will have to be modified to enclosed trough and adopt a Seawater, Once-trough condenser. Being the development peculiar, a small scale pilot plant is suggested before a full-scale development.


Sign in / Sign up

Export Citation Format

Share Document