Climate Change and Wetlands of the Prairie Pothole Region of North America: Effects, Management and Mitigation

Author(s):  
Marley J. Waiser
2015 ◽  
Vol 16 (2) ◽  
pp. 515-526 ◽  
Author(s):  
Benjamin S. Rashford ◽  
Richard M. Adams ◽  
JunJie Wu ◽  
Richard A. Voldseth ◽  
Glenn R. Guntenspergen ◽  
...  

2021 ◽  
Author(s):  
Zhe Zhang ◽  
Fei Chen ◽  
Michael Barlage ◽  
Lauren E Bortolotti ◽  
James Famiglietti ◽  
...  

The Auk ◽  
2006 ◽  
Vol 123 (2) ◽  
pp. 323-334
Author(s):  
Gary L. Krapu ◽  
Jan L. Eldridge ◽  
Cheri L. Gratto-Trevor ◽  
Deborah A. Buhl

Abstract We measured fresh body mass, total body fat, and fat-free dry mass (FFDM) of three species of Arctic-nesting calidrid sandpipers (Baird's Sandpiper [Calidris bairdii], hereafter “BASA”; Semipalmated Sandpiper [C. pusilla], hereafter “SESA”; and White-rumped Sandpiper [C. fuscicollis], hereafter “WRSA”) during spring stopovers in the Prairie Pothole Region (PPR) of North Dakota, and evaluated the contribution of stored fat to (1) energy requirements for migration to their Arctic-breeding grounds and (2) nutrient needs for reproduction. All spring migrant WRSA (n = 124) and BASA (n = 111), and all but 2 of 99 SESA we collected were ≥2 years old. Male and female BASA migrated through North Dakota concurrently, male SESA averaged earlier than females, and WRSA males preceded females. Fat indices (ratio of fat to FFDM) of male and female SESA and WRSA averaged approximately twice those of male and female BASA. Total body fat of male and female BASA increased with date in spring 1980, but not in 1981; slopes were similar for both sexes each year. Male and female SESA arrived lean in 1980 and 1981, and total body fat increased with date in both years, with similar slopes for all combinations of sex and year. Male and female WRSA arrived lean in 1980–1981 and 1981, respectively, and total body fat increased with date, whereas females arrived with fat reserves already acquired in 1980. Interspecific and sex differences in migration schedules probably contributed to variation in fat storage patterns by affecting maintenance energy costs and food availability. Estimated flight ranges of BASA suggest that few could have met their energy needs for migration to the breeding grounds exclusively from fat stored by the time of departure from North Dakota. Estimated flight ranges of SESA and WRSA, along with fresh body masses of both species when live-trapped on or near their breeding grounds in northern Canada, suggest that major parts of both populations stored adequate fat by departure from temperate mid-continental North America to meet their energy requirements for migration and part of their nutrient needs for reproduction. Dinámica de la Grasa en Chorlos que Nidifican en el Ártico durante la Primavera en el Área Continental Central de América del Norte


2016 ◽  
pp. 1-10 ◽  
Author(s):  
Kevin E. Doherty ◽  
David W. Howerter ◽  
James H. Devries ◽  
Johann Walker

2020 ◽  
Vol 24 (2) ◽  
pp. 655-672 ◽  
Author(s):  
Zhe Zhang ◽  
Yanping Li ◽  
Michael Barlage ◽  
Fei Chen ◽  
Gonzalo Miguez-Macho ◽  
...  

Abstract. Shallow groundwater in the Prairie Pothole Region (PPR) is predominantly recharged by snowmelt in the spring and supplies water for evapotranspiration through the summer and fall. This two-way exchange is underrepresented in current land surface models. Furthermore, the impacts of climate change on the groundwater recharge rates are uncertain. In this paper, we use a coupled land–groundwater model to investigate the hydrological cycle of shallow groundwater in the PPR and study its response to climate change at the end of the 21st century. The results show that the model does a reasonably good job of simulating the timing of recharge. The mean water table depth (WTD) is well simulated, except for the fact that the model predicts a deep WTD in northwestern Alberta. The most significant change under future climate conditions occurs in the winter, when warmer temperatures change the rain/snow partitioning, delaying the time for snow accumulation/soil freezing while advancing early melting/thawing. Such changes lead to an earlier start to a longer recharge season but with lower recharge rates. Different signals are shown in the eastern and western PPR in the future summer, with reduced precipitation and drier soils in the east but little change in the west. The annual recharge increased by 25 % and 50 % in the eastern and western PPR, respectively. Additionally, we found that the mean and seasonal variation of the simulated WTD are sensitive to soil properties; thus, fine-scale soil information is needed to improve groundwater simulation on the regional scale.


Wetlands ◽  
2016 ◽  
Vol 36 (S2) ◽  
pp. 445-459 ◽  
Author(s):  
Valerie A. Steen ◽  
Susan K. Skagen ◽  
Cynthia P. Melcher

Sign in / Sign up

Export Citation Format

Share Document