scholarly journals Modeling groundwater responses to climate change in the Prairie Pothole Region

2020 ◽  
Vol 24 (2) ◽  
pp. 655-672 ◽  
Author(s):  
Zhe Zhang ◽  
Yanping Li ◽  
Michael Barlage ◽  
Fei Chen ◽  
Gonzalo Miguez-Macho ◽  
...  

Abstract. Shallow groundwater in the Prairie Pothole Region (PPR) is predominantly recharged by snowmelt in the spring and supplies water for evapotranspiration through the summer and fall. This two-way exchange is underrepresented in current land surface models. Furthermore, the impacts of climate change on the groundwater recharge rates are uncertain. In this paper, we use a coupled land–groundwater model to investigate the hydrological cycle of shallow groundwater in the PPR and study its response to climate change at the end of the 21st century. The results show that the model does a reasonably good job of simulating the timing of recharge. The mean water table depth (WTD) is well simulated, except for the fact that the model predicts a deep WTD in northwestern Alberta. The most significant change under future climate conditions occurs in the winter, when warmer temperatures change the rain/snow partitioning, delaying the time for snow accumulation/soil freezing while advancing early melting/thawing. Such changes lead to an earlier start to a longer recharge season but with lower recharge rates. Different signals are shown in the eastern and western PPR in the future summer, with reduced precipitation and drier soils in the east but little change in the west. The annual recharge increased by 25 % and 50 % in the eastern and western PPR, respectively. Additionally, we found that the mean and seasonal variation of the simulated WTD are sensitive to soil properties; thus, fine-scale soil information is needed to improve groundwater simulation on the regional scale.

2019 ◽  
Author(s):  
Zhe Zhang ◽  
Yanping Li ◽  
Michael Barlage ◽  
Fei Chen ◽  
Gonzalo Miguez-Macho ◽  
...  

Abstract. Shallow groundwater in the Prairie Pothole Region (PPR) is recharged predominantly by snowmelt in the spring and may supply water for evapotranspiration through the summer/fall. This two-way exchange is underrepresented in land-surface models. Furthermore, the impacts of climate change on the groundwater recharge are uncertain. In this paper, we use a coupled land and groundwater model to investigate the hydrologic cycle of shallow groundwater in the PPR and study its response to climate change at the end of the 21st century. The results show that the model reasonably simulates the water table depth (WTD) and the timing of recharge processes, but underestimates the seasonal variation of WTD, due to mismatches of the soil types between observations and the model. The most significant change under future climate occurs in the winter, when the warmer temperature changes the rain/snow partitioning, delay the time for snow accumulation/soil freezing while bringing forward early melting/thawing. Such changes lead to an earlier start to a longer recharge season, but with lower recharge rates. Different signals are shown in the eastern and western PPR in the future summer, with reduced precipitation and drier soils in the east but little change in the west. The annual recharge increased by 25% and 50% in the eastern and western PPR, respectively. Additionally, we found the mean and seasonal variation of the simulated WTD are sensitive to soil properties and fine-scale soil information is needed to improve groundwater simulation on a regional scale.


2005 ◽  
Vol 36 (4-5) ◽  
pp. 321-333 ◽  
Author(s):  
Valentina Krysanova ◽  
Fred Hattermann ◽  
Anja Habeck

Reliable modelling of climate–water interactions at the river basin and regional scale requires development of advanced modelling approaches at scales relevant for assessing the potential effects of climate change on the hydrological cycle. These approaches should represent the atmospheric, surface and subsurface hydrological processes and take into account their characteristic temporal and spatial scales of occurrence. The paper presents a climate change impact assessment performed for the Elbe River basin in Germany (about 100 000 km2). The method used for the study combines: (a) a statistical downscaling method driven by GCM-predicted temperature trend for producing climate scenarios, and (b) a simulation technique based on an ecohydrological semi-distributed river basin model, which was thoroughly validated in advance. The overall result of the climate impact study for the basin is that the mean water discharge and the mean groundwater recharge in the Elbe basin will be most likely decreased under the expected climate change and diffuse source pollution will be diminished. Our study confirms that the uncertainty in hydrological and water quality responses to changing climate is generally higher than the uncertainty in climate input. The method is transferable to other basins in the temperate zone.


2021 ◽  
Author(s):  
Zhe Zhang ◽  
Fei Chen ◽  
Michael Barlage ◽  
Lauren E Bortolotti ◽  
James Famiglietti ◽  
...  

2021 ◽  
Author(s):  
Michiel Maertens ◽  
Veerle Vanacker ◽  
Gabriëlle De Lannoy ◽  
Frederike Vincent ◽  
Raul Giménez ◽  
...  

<p>The South-American Dry Chaco is a unique ecoregion as it is one of the largest sedimentary plains in the world hosting the planet’s largest dry forest. The 787.000 km² region covers parts of Argentina, Paraguay, and Bolivia and is characterized by a negative climatic water balance as a consequence of limited rainfall inputs (800 mm/year) and high temperatures (21°C). In combination with the region’s extreme flat topography (slopes < 0.1%) and shallow groundwater tables, saline soils are expected in substantial parts of the region. In addition, it is expected that large-scale deforestation processes disrupt the hydrological cycle resulting in rising groundwater tables and further increase the risk for soil salinization.</p><p>In this study, we identified the regional-scale patterns of subsurface soil salinity in the Dry Chaco.  Field data were obtained during a two-month field campaign in the dry season of 2019. A total of 492 surface- and 142 subsurface-samples were collected along East-West transects to determine soil electric conductivity, pH, bulk density and humidity. Spatial regression techniques were used to reveal the topographic and ecohydrological variables that are associated with subsurface soil salinity over the Dry Chaco. The hydrological information was obtained from a state-of-the-art land surface model with an improved set of satellite-derived vegetation and land cover parameters.</p><p>In the presentation, we will present a subsurface soil salinity map for a part of the Argentinean Dry Chaco and provide relevant insights into the driving mechanisms behind it.</p>


2020 ◽  
Author(s):  
Fabio Di Sante ◽  
Erika Coppola ◽  
Filippo Giorgi

<p>In a sick world with fever caused by global warming, the hydrological cycle will experience most certainly large changes in intensity and variability. One of the most intense phenomena that will probably be affected by the climate change is the flood hazard. For a long time the stakeholders have been dedicated resources to assess the risk linked to the floods magnitude and frequencies and shaping the public infrastructures based on the assumption of their immutability. Under the effect of the climate change this assumption can be broken and a different approach should be followed to avoid large disasters and threaten to the population health. In this study the biggest ever ensemble of hydroclimatic  simulations has been used to simulate the river floods over the European regions. A river routing model derived from a distributed hydrological model (CHyM) has been forced with 44 EURO-CORDEX, 5 CMIP5 and 7 CMIP6 simulations to assess the effects of the climate change on the floods magnitude under two different scenarios (RCP2.6 and RCP8.5 for EURO-CORDEX and CMIP5, SSP126 and SSP585 for CMIP6). The impact of the climate change has been evaluated using a 100 year return period discharge indicator (Q100) obtained fitting a Gumbel distribution on the yearly peak discharge values. Results show a decrease of magnitude of flood events over the Mediterranean, Scandinavia and the North Eastern European regions. Over these two last regions the signal appear particularly robust and in contrast to the projected mean flow signal that is shown to increase by the end of the century mainly driven by the related increase of mean precipitations. The reduction of snow accumulation during winter time linked to a large increase of late winter temperatures is the main reason behind the decrease of floods over the North Eastern regions. An opposite signal is projected  instead over Great Britain, Ireland, Northern Italy and Western Europe where a robust signal of floods magnitude increase is evident driven by e the increase of extreme precipitations. All these simulation are meant to feed the impact community and to shade the light on the use of climate information for impact assessment studies.</p>


2012 ◽  
Vol 9 (11) ◽  
pp. 13037-13081 ◽  
Author(s):  
E. Sproles ◽  
A. Nolin ◽  
K. Rittger ◽  
T. Painter

Abstract. Globally maritime snow comprises 10% of seasonal snow and is considered highly sensitive to changes in temperature. This study investigates the effect of climate change on maritime mountain snowpack in the McKenzie River Basin (MRB) in the Cascades Mountains of Oregon, USA. Melt water from the MRB's snowpack provides critical water supply for agriculture, ecosystems, and municipalities throughout the region especially in summer when water demand is high. Because maritime snow commonly falls at temperatures close to 0 °C, accumulation of snow versus rainfall is highly sensitive to temperature increases. Analyses of current climate and projected climate change impacts show rising temperatures in the region. To better understand the sensitivity of snow accumulation to increased temperatures, we modeled the spatial distribution of snow water equivalent (SWE) in the MRB for the period of 1989–2009 with the SnowModel spatially distributed model. Simulations were evaluated using point-based measurements of SWE, precipitation, and temperature that showed Nash-Sutcliffe Efficiency coefficients of 0.83, 0.97, and 0.80, respectively. Spatial accuracy was shown to be 82% using snow cover extent from the Landsat Thematic Mapper. The validated model was used to evaluate the sensitivity of snowpack to projected temperature increases and variability in precipitation, and how changes were expressed in the spatial and temporal distribution of SWE. Results show that a 2 °C increase in temperature would shift peak snowpack 12 days earlier and decrease basin-wide volumetric snow water storage by 56%. Snowpack between the elevations of 1000 and 1800 m is the most sensitive to increases in temperature. Upper elevations were also affected, but to a lesser degree. Temperature increases are the primary driver of diminished snowpack accumulation, however variability in precipitation produce discernible changes in the timing and volumetric storage of snowpack. This regional scale study serves as a case study, providing a modeling framework to better understand the impacts of climate change in similar maritime regions of the world.


2021 ◽  
Author(s):  
◽  
Craig Wayne Allen

<p>Te Hapua is a complex of small, privately owned wetlands approximately 60 km northwest of Wellington. The wetlands represent a large portion of the region's remaining palustrine swamps, which have been reduced to just 1% of the pre-1900 expanse. Whilst many land owners have opted to protect wetlands on their land with covenants, questions have been raised regarding potential threats stemming from the wider region. Firstly, some regional groundwater level records have shown significant decline in the 10 to 25 years they have been monitored. The reason for this is unclear. Wetlands are commonly associated with groundwater discharge, so a decline in groundwater level could adversely affect wetland water input. Secondly, estimated groundwater resources are currently just 8% allocated, so there is potential for a 92% increase in groundwater abstraction from aquifers that underlie the wetlands. Finally, predictions of future climate change indicate changes in rainfall quantity and intensity. This would likely alter the hydrological cycle, impacting on rainfall dependant ecosystems such as wetlands as well as groundwater recharge. Whilst previous ecological surveys at Te Hapua provide valuable information on biodiversity and ecological threat, there has been no detailed study of the hydrology of the wetlands. An understanding of the relationship between the surface water of the wetlands and the aquifers that underlie the area is important when considering the future viability of the wetlands. This study aims to define the local hydrology and assess the potential threat of 'long term' groundwater level decline, increased groundwater abstraction and predicted climate change. Eleven months of water level data was supplied by Wellington Regional Council for three newly constructed Te Hapua wetland surface water and adjacent shallow groundwater monitoring sites. The data were analysed in terms of their relative water levels and response to rainfall. A basic water balance was calculated using the data from the monitoring sites and a GIS analysis of elevation data mapped the wetlands and their watersheds. A survey of 21 individual wetlands was carried out to gather water quality and water regime data to enable an assessment of wetland class. Historical groundwater level trends and geological records were analysed in the context of potential threat to the wetlands posed by a decline in groundwater level. Climate change predictions for the Kapiti Coast were reviewed and discussed in the context of possible changes to the hydrological cycle and to wetlands. Results from the wetland survey indicated that there are two distinct bands of wetlands at Te Hapua. Fens are found mostly in the eastern band and are more likely to be discharge wetlands, some of which are ephemeral. Swamps are found mostly in the western band and are more likely to be recharge wetlands. Dominant water input to fens is via local rainfall and local through-flow of shallow groundwater, especially from surrounding dunes. The eastern band of wetlands is typified by higher dunes and hence has greater input from shallow groundwater than wetlands in the western band. Dominant water input to swamps is via local rainfall, runoff, and through-flow from the immediate watershed and adjacent wetlands. Overall, the future viability of the Te Hapua wetland complex appears promising. Historical groundwater declines appear to be minimal and show signs of reversing. Abstraction from deep aquifers is not likely to impact on wetland water levels. Climate change is likely to have an impact on the hydrological cycle and may increase pressure on some areas, especially ephemeral wetlands. The effect of climate change on groundwater level is more difficult to forecast, but may lower water level in the long term.</p>


Wetlands ◽  
2016 ◽  
Vol 36 (S2) ◽  
pp. 445-459 ◽  
Author(s):  
Valerie A. Steen ◽  
Susan K. Skagen ◽  
Cynthia P. Melcher

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e100034 ◽  
Author(s):  
Neal D. Niemuth ◽  
Kathleen K. Fleming ◽  
Ronald E. Reynolds

Sign in / Sign up

Export Citation Format

Share Document