Power quality in power system is one of the most important researches in the recent age, many researchers working in this area keeping objective to achieve quality power. This paper presents power quality issues in power systems, especially in INDIA. It also includes the various causes of power quality problems, their impact and precautionary measure to solve the power quality issues. Various mitigating devices used to solve various power quality problems and some methods suggested improving the power quality. Different types of controller and their specific applications also presented. A Hybrid APF designee is also suggested to mitigate the harmonics in power lines. Finally, the paper is designed to give an overview of power quality phenomenon in power system and can be utilized by the researchers those working in the area of power quality.


Author(s):  
Bih-Yuan Ku ◽  
Yen-Chun Chen ◽  
Guan-Ru Chen ◽  
Ming-Jan Ko

In this paper we present our study on load power quality characteristics of new trains with switch-type converters using field measurement data. We apply these data to perform power flow and harmonic power flow computations to examine the impacts of new train loads to existing ac traction power network with filters designed for old train loads. Our simulation results show that existing filters can result in over-compensation of reactive power and ineffective filtering of load current harmonic components. It is recommended that filter designs be modified to suit the load power characteristics of new-generation trains.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Earl A. R. L. Pannila ◽  
Mahesh Edirisinghe

Electrical equipment and supply cables demand a better quality of supply, with the recent advancements in integrated sensitive solid-state controls. Divergently, proliferated heavy inductive motors and some performance additions based on power electronics have introduced power quality issues to the network. Thus, this study mainly investigates the impact of switching transients generated by electromechanical machines in industrial power systems on insulation deterioration while taking transient overvoltages due to capacitor bank switching also to support. Transients with a high rate of rise are likely to catalyze the degradation of the insulation quality and break down the insulating material through ionization. These steeply passing overvoltage stresses let partial discharges ensue, which can attack the insulation over long service. To unveil this danger, 314 common-mode transient waveforms were measured in the electrical machines of five tea factories in Sri Lanka, in a 50 ms measurement window, taken in 55 measuring attempts. Most of the transients observed are in the form of a damped oscillatory waveform tailed by fast exponential collapse. That correlates to insulation degradation having a very steep rise as 30.04 V/ns, the highest at the withering section. When machines are heavily loaded, situations tend to generate transients with high amplitudes. There were transient bursts that spread as 426.3 ms, while 14 ns fast rise times were recorded from withering motors. Unlike electrical resonance and power-frequency overvoltages, electromagnetic switching transients last even less than 100 ms. To underline this, an analysis of the frequency domain of transients was also presented, which proves high density of high-frequency components reaching 107 kHz range. Accepting the fact that frequency and amplitude are always under the influences of innumerable dynamics, the observational evidence of the study endorses that electrical stress built by the transient nature of the factories reduces the life expectancy of electrical insulation.


2013 ◽  
Vol 28 (4) ◽  
pp. 2024-2036 ◽  
Author(s):  
Keng-Weng Lao ◽  
NingYi Dai ◽  
Wei-Gang Liu ◽  
Man-Chung Wong

Sign in / Sign up

Export Citation Format

Share Document