The Second-Degree Perspective: Understanding the Alliance Portfolio Configurations that Deliver Network Advantage

2015 ◽  
pp. 91-116
Burns ◽  
2020 ◽  
Author(s):  
Saeed Naseri ◽  
Mojtaba Golpich ◽  
Tohid Roshancheshm ◽  
Mohammad Ghadimi Joobeni ◽  
Moein Khodayari ◽  
...  
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 310 ◽  
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

This paper is devoted to introducing a nonlinear reconstruction operator, the piecewise polynomial harmonic (PPH), on nonuniform grids. We define this operator and we study its main properties, such as its reproduction of second-degree polynomials, approximation order, and conditions for convexity preservation. In particular, for σ quasi-uniform grids with σ≤4, we get a quasi C3 reconstruction that maintains the convexity properties of the initial data. We give some numerical experiments regarding the approximation order and the convexity preservation.


Heredity ◽  
2021 ◽  
Author(s):  
Iván Galván-Femenía ◽  
Carles Barceló-Vidal ◽  
Lauro Sumoy ◽  
Victor Moreno ◽  
Rafael de Cid ◽  
...  

AbstractThe detection of family relationships in genetic databases is of interest in various scientific disciplines such as genetic epidemiology, population and conservation genetics, forensic science, and genealogical research. Nowadays, screening genetic databases for related individuals forms an important aspect of standard quality control procedures. Relatedness research is usually based on an allele sharing analysis of identity by state (IBS) or identity by descent (IBD) alleles. Existing IBS/IBD methods mainly aim to identify first-degree relationships (parent–offspring or full siblings) and second degree (half-siblings, avuncular, or grandparent–grandchild) pairs. Little attention has been paid to the detection of in-between first and second-degree relationships such as three-quarter siblings (3/4S) who share fewer alleles than first-degree relationships but more alleles than second-degree relationships. With the progressively increasing sample sizes used in genetic research, it becomes more likely that such relationships are present in the database under study. In this paper, we extend existing likelihood ratio (LR) methodology to accurately infer the existence of 3/4S, distinguishing them from full siblings and second-degree relatives. We use bootstrap confidence intervals to express uncertainty in the LRs. Our proposal accounts for linkage disequilibrium (LD) by using marker pruning, and we validate our methodology with a pedigree-based simulation study accounting for both LD and recombination. An empirical genome-wide array data set from the GCAT Genomes for Life cohort project is used to illustrate the method.


Sign in / Sign up

Export Citation Format

Share Document