2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Kui Fu Chen ◽  
Yan Feng Li

The numerical inverse Laplace transformation (NILM) makes use of numerical integration. Generally, a high-order scheme of numerical integration renders high accuracy. However, surprisingly, this is not true for the NILM to the transfer function. Numerical examples show that the performance of higher-order schemes is no better than that of the trapezoidal scheme. In particular, the solutions from high-order scheme deviate from the exact one markedly over the rear portion of the period of interest. The underlying essence is examined. The deviation can be reduced by decreasing the frequency-sampling interval.


2006 ◽  
Vol 74 (5) ◽  
pp. 885-897 ◽  
Author(s):  
Nilanjan Saha ◽  
D. Roy

For most practical purposes, the focus is often on obtaining statistical moments of the response of stochastically driven oscillators than on the determination of pathwise response histories. In the absence of analytical solutions of most nonlinear and higher-dimensional systems, Monte Carlo simulations with the aid of direct numerical integration remain the only viable route to estimate the statistical moments. Unfortunately, unlike the case of deterministic oscillators, available numerical integration schemes for stochastically driven oscillators have significantly poorer numerical accuracy. These schemes are generally derived through stochastic Taylor expansions and the limited accuracy results from difficulties in evaluating the multiple stochastic integrals. As a numerically superior and semi-analytic alternative, a weak linearization technique based on Girsanov transformation of probability measures is proposed for nonlinear oscillators driven by additive white-noise processes. The nonlinear part of the drift vector is appropriately decomposed and replaced, resulting in an exactly solvable linear system. The error in replacing the nonlinear terms is then corrected through the Radon-Nikodym derivative following a Girsanov transformation of probability measures. Since the Radon-Nikodym derivative is expressible in terms of a stochastic exponential of the linearized solution and computable with high accuracy, one can potentially achieve a remarkably high numerical accuracy. Although the Girsanov linearization method is applicable to a large class of oscillators, including those with nondifferentiable vector fields, the method is presently illustrated through applications to a few single- and multi-degree-of-freedom oscillators with polynomial nonlinearity.


2011 ◽  
Vol 57 (2) ◽  
pp. 311-321
Author(s):  
R. Adeniyi ◽  
M. Alabi

A Collocation Method for Direct Numerical Integration of Initial Value Problems in Higher Order Ordinary Differential Equations This paper concerns the solution of initial value problems (IVPs) in ordinary differential equations (ODEs) of orders higher than unity. The Chebyshev polynomials is hereby adopted as basis function in a multi-step collocation technique for the derivation of continuous integration schemes for direct solution of these ODEs without recourse to the conventional approach of first reducing such to their equivalent first order differential systems.


2010 ◽  
Vol 55 (2-3) ◽  
pp. 145-170 ◽  
Author(s):  
Alessandra Aimi ◽  
Mauro Diligenti ◽  
Chiara Guardasoni

Sign in / Sign up

Export Citation Format

Share Document