Fabrication Of The Anode-Supported Solid Oxide Fuel Cell With Composite Cathodes And The Performance Evaluation Upon Long-Term Operation

Author(s):  
Tai-Nan Lin ◽  
Yang-Chuang Chang ◽  
Maw-Chwain Lee ◽  
Ruey-yi Lee
2012 ◽  
Vol 81 ◽  
pp. 185-188 ◽  
Author(s):  
Tai-Nan Lin ◽  
Maw-Chwain Lee ◽  
Rung-Je Yang ◽  
Jen-Chen Chang ◽  
Wei-Xin Kao ◽  
...  

Fuel Cells ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 545-548 ◽  
Author(s):  
G. Brus ◽  
H. Iwai ◽  
Y. Otani ◽  
M. Saito ◽  
H. Yoshida ◽  
...  

2018 ◽  
Vol 387 ◽  
pp. 57-63 ◽  
Author(s):  
Jiajun Yang ◽  
Wei Huang ◽  
Xiaochun Wang ◽  
Jun Li ◽  
Dong Yan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3476
Author(s):  
Tomasz A. Prokop ◽  
Grzegorz Brus ◽  
Janusz S. Szmyd

Degradation of electrode microstructure is one of the key factors affecting long term performance of Solid Oxide Fuel Cell systems. Evolution of a multiphase system can be described quantitatively by the change in its interfacial energy. In this paper, we discuss free energy of a microstructure to showcase the anisotropy of its evolution during a long-term performance experiment involving an SOFC stack. Ginzburg Landau type functional is used to compute the free energy, using diffuse phase distributions based on Focused Ion Beam Scanning Electron Microscopy images of samples taken from nine different sites within the stack. It is shown that the rate of microstructure evolution differs depending on the position within the stack, similar to phase anisotropy. However, the computed spatial relation does not correlate with the observed distribution of temperature.


2021 ◽  
Vol 505 ◽  
pp. 230058
Author(s):  
Jingxuan Peng ◽  
Jian Huang ◽  
Xiao-long Wu ◽  
Yuan-wu Xu ◽  
Haochun Chen ◽  
...  

Author(s):  
Dustin Lee ◽  
Jing-Kai Lin ◽  
Chun-Huang Tsai ◽  
Szu-Han Wu ◽  
Yung-Neng Cheng ◽  
...  

The effects of isothermally long-term and thermal cycling tests on the performance of an ASC type commercial solid oxide fuel cell (SOFC) have been investigated. For the long-term test, the cells were tested over 5000 h in two stages, the first 3000 h and the followed 2000 h, under the different flow rates of hydrogen and air. Regarding the thermal cycling test, 60 cycles in total were also divided into two sections, the temperature ranges of 700 °C to 250 °C and 700 °C to 50 °C were applied for the every single cycle of first 30 cycles and the later 30 cycles, respectively. The results of long-term test show that the average degradation rates for the cell in the first 3000 h and the followed 2000 h under different flow rates of fuel and air are 1.16 and 2.64%/kh, respectively. However, there is only a degradation of 6.6% in voltage for the cell after 60 thermal cycling tests. In addition, it is found that many pores formed in the anode of the cell which caused by the agglomeration of Ni after long-term test. In contrast, the vertical cracks penetrating through the cathode of the cell and the in-plane cracks between the cathode and barrier layer of the cell formed due to the coefficient of thermal expansion (CTE) mismatch after 60 thermal cycling tests.


2015 ◽  
Vol 3 (6) ◽  
pp. 2684-2689 ◽  
Author(s):  
Y. M. Guo ◽  
G. Largiller ◽  
C. Guizard ◽  
C. Tardivat ◽  
D. Farrusseng

An anode-supported AP-SOFC with long-term operational stability was developed to improve cell performance over 14 times without any coke formation.


Sign in / Sign up

Export Citation Format

Share Document