interface evolution
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 65)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Jun-Fan Ding ◽  
Rui Xu ◽  
Xia-Xia Ma ◽  
Ye Xiao ◽  
Yu-Xing Yao ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 1440
Author(s):  
Miguel Uh Zapata ◽  
Damien Pham Van Bang ◽  
Kim Dan Nguyen

The numerical modeling of sediment transport under wave impact is challenging because of the complex nature of the triple wave–structure–sediment interaction. This study presents three-dimensional numerical modeling of sediment scouring due to non-breaking wave impact on a vertical seawall. The Navier–Stokes–Exner equations are approximated to calculate the full evolution of flow fields and morphodynamic responses. The bed erosion model is based on the van Rijn formulation with a mass-conservative sand-slide algorithm. The numerical solution is obtained by using a projection method and a fully implicit second-order unstructured finite-volume method in a σ-coordinate computational domain. This coordinate system is employed to accurately represent the free-surface elevation and sediment/water interface evolution. Experimental results of the velocity field, surface wave motion, and scour hole formation hole are used to compare and demonstrate the proposed numerical method’s capabilities to model the seawall scour.


2021 ◽  
Vol 931 ◽  
Author(s):  
B. Dinesh ◽  
T. Corbin ◽  
R. Narayanan

Rayleigh–Taylor instability of a thin liquid film overlying a passive fluid is examined when the film is attached to a periodic wavy deep corrugated wall. A reduced-order long-wave model shows that the wavy wall enhances the instability toward rupture when the interface pattern is sub-harmonic to the wall pattern. An expression that approximates the growth constant of instability is obtained for any value of wall amplitude for the special case when the wall consists of two full waves and the interface consists of a full wave. Nonlinear computations of the interface evolution show that sliding is arrested by the wavy wall if a single liquid film residing over a passive fluid is considered but not necessarily when a bilayer sandwiched by a top wavy wall and bottom flat wall is considered. In the latter case interface tracking shows that primary and secondary troughs will evolve and subsequently slide along the flat wall due to symmetry-breaking. It is further shown that this sliding motion of the interface can ultimately be arrested by the top wavy wall, depending on the holdup of the fluids. In other words, there exists a critical value of the interface position beyond which the onset of the sliding motion is observed and below which the sliding is always arrested.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tong-Tong Zuo ◽  
Raffael Rueß ◽  
Ruijun Pan ◽  
Felix Walther ◽  
Marcus Rohnke ◽  
...  

AbstractAll-solid-state batteries are intensively investigated, although their performance is not yet satisfactory for large-scale applications. In this context, the combination of Li10GeP2S12 solid electrolyte and LiNi1-x-yCoxMnyO2 positive electrode active materials is considered promising despite the yet unsatisfactory battery performance induced by the thermodynamically unstable electrode|electrolyte interface. Here, we report electrochemical and spectrometric studies to monitor the interface evolution during cycling and understand the reactivity and degradation kinetics. We found that the Wagner-type model for diffusion-controlled reactions describes the degradation kinetics very well, suggesting that electronic transport limits the growth of the degradation layer formed at the electrode|electrolyte interface. Furthermore, we demonstrate that the rate of interfacial degradation increases with the state of charge and the presence of two oxidation mechanisms at medium (3.7 V vs. Li+/Li < E < 4.2 V vs. Li+/Li) and high (E ≥ 4.2 V vs. Li+/Li) potentials. A high state of charge (>80%) triggers the structural instability and oxygen release at the positive electrode and leads to more severe degradation.


2021 ◽  
Vol 5 (ISS) ◽  
pp. 1-27
Author(s):  
Aziz Niyazov ◽  
Nicolas Mellado ◽  
Loic Barthe ◽  
Marcos Serrano

Pervasive interfaces can present relevant information anywhere in our environment, and they are thus challenged by the non rectilinearity of the display surface (e.g. circular table) and by the presence of objects that can partially occlude the interface (e.g. a book or cup on the table). To tackle this problem, we propose a novel solution based on two core contributions: the decomposition of the interface into deformable graphical units, called Dynamic Decals, and the control of their position and behaviour by a constraint-based approach. Our approach dynamically deforms the interface when needed while minimizing the impact on its visibility and layout properties. To do so, we extend previous work on implicit deformations to propose and experimentally validate functions defining different decal shapes and new deformers modeling decal deformations when they collide. Then, we interactively optimize the decal placements according to the interface geometry and their interrelations. Relations are modeled as constraints and the interface evolution results from an easy and efficient to solve minimization problem. Our approach is validated by a user study showing that, compared to two baselines, Dynamic decals is an aesthetically pleasant interface that preserves visibility, layout and aesthetic properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xi Wang ◽  
Xiao-Mian Hu ◽  
Sheng-Tao Wang ◽  
Hao Pan ◽  
Jian-Wei Yin

AbstractThe evolution of shear instability between elastic–plastic solid and ideal fluid which is concerned in oblique impact is studied by developing an approximate linear theoretical model. With the velocities expressed by the velocity potentials from the incompressible and irrotational continuity equations and the pressures obtained by integrating momentum equations with arbitrary densities, the motion equations of the interface amplitude are deduced by considering the continuity of normal velocities and the force equilibrium with the perfectly elastic–plastic properties of solid at interface. The completely analytical formulas of the growth rate and the amplitude evolution are achieved by solving the motion equations. Consistent results are performed by the model and 2D Lagrange simulations. The characteristics of the amplitude development and Atwood number effects on the growth are discussed. The growth of the amplitude is suppressed by elastic–plastic properties of solids in purely elastic stage or after elastic–plastic transition, and the amplitude oscillates if the interface is stable. The system varies from stable to unstable state as Atwood number decreasing. For large Atwood number, elastic–plastic properties play a dominant role on the interface evolution which may influence the formation of the wavy morphology of the interface while metallic plates are suffering obliquely impact.


Sign in / Sign up

Export Citation Format

Share Document