operational stability
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 178)

H-INDEX

45
(FIVE YEARS 13)

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3854
Author(s):  
Adikwu Gowon Jacob ◽  
Roswanira Abdul Wahab ◽  
Mailin Misson

Inorganic biopolymer-based nanocomposites are useful for stabilizing lipases for enhanced catalytic performance and easy separation. Herein, we report the operational stability, regenerability, and thermodynamics studies of the ternary biogenic silica/magnetite/graphene oxide nanocomposite (SiO2/Fe3O4/GO) as a support for Candida rugosa lipase (CRL). The X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field-electron scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM), and nitrogen adsorption/desorption data on the support and biocatalyst corroborated their successful fabrication. XPS revealed the Fe3O4 adopted Fe2+ and Fe3+ oxidation states, while XRD data of GO yielded a peak at 2θ = 11.67°, with the SiO2/Fe3O4/GO revealing a high surface area (≈261 m2/g). The fourier transform infrared (FTIR) spectra affirmed the successful fabricated supports and catalyst. The half-life and thermodynamic parameters of the superparamagnetic immobilized CRL (CRL/SiO2/Fe3O4/GO) improved over the free CRL. The microwave-regenerated CRL/SiO2/Fe3O4/GO (≈82%) exhibited higher catalytic activity than ultrasonic-regenerated (≈71%) ones. Lower activation (Ea) and higher deactivation energies (Ed) were also noted for the CRL/SiO2/Fe3O4/GO (13.87 kJ/mol, 32.32 kJ/mol) than free CRL (15.26 kJ/mol, 27.60 kJ/mol). A peak at 4.28 min in the gas chromatograph-flame ionization detection (GC-FID) chromatogram of the purified ethyl valerate supported the unique six types of 14 hydrogen atoms of the ester (CAS: 539-82-2) in the proton nuclear magnetic resonance (1H-NMR) data. The results collectively demonstrated the suitability of SiO2/Fe3O4/GO in stabilizing CRL for improved operational stability and thermodynamics and permitted biocatalyst regenerability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mafalda R. Almeida ◽  
Raquel O. Cristóvão ◽  
Maria A. Barros ◽  
João C. F. Nunes ◽  
Rui A. R. Boaventura ◽  
...  

Abstractl-asparaginase (ASNase, EC 3.5.1.1) is an enzyme that catalyzes the l-asparagine hydrolysis into l-aspartic acid and ammonia, being mainly applied in pharmaceutical and food industries. However, some disadvantages are associated with its free form, such as the ASNase short half-life, which may be overcome by enzyme immobilization. In this work, the immobilization of ASNase by adsorption over pristine and modified multi-walled carbon nanotubes (MWCNTs) was investigated, the latter corresponding to functionalized MWCNTs through a hydrothermal oxidation treatment. Different operating conditions, including pH, contact time and ASNase/MWCNT mass ratio, as well as the operational stability of the immobilized ASNase, were evaluated. For comparison purposes, data regarding the ASNase immobilization with pristine MWCNT was detailed. The characterization of the ASNase-MWCNT bioconjugate was addressed using different techniques, namely Transmission Electron Microscopy (TEM), Thermogravimetric Analysis (TGA) and Raman spectroscopy. Functionalized MWCNTs showed promising results, with an immobilization yield and a relative recovered activity of commercial ASNase above 95% under the optimized adsorption conditions (pH 8, 60 min of contact and 1.5 × 10–3 g mL−1 of ASNase). The ASNase-MWCNT bioconjugate also showed improved enzyme operational stability (6 consecutive reaction cycles without activity loss), paving the way for its use in industrial processes.


2021 ◽  
pp. 3916-3923
Author(s):  
Bowen Yang ◽  
Jiajia Suo ◽  
Francesco Di Giacomo ◽  
Selina Olthof ◽  
Dmitry Bogachuk ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1211
Author(s):  
Xingyi Lyu ◽  
Rebekah Gonzalez ◽  
Andalwisye Horton ◽  
Tao Li

Enzymes are the highly efficient biocatalyst in modern biotechnological industries. Due to the fragile property exposed to the external stimulus, the application of enzymes is highly limited. The immobilized enzyme by polymer has become a research hotspot to empower enzymes with more extraordinary properties and broader usage. Compared with free enzyme, polymer immobilized enzymes improve thermal and operational stability in harsh environments, such as extreme pH, temperature and concentration. Furthermore, good reusability is also highly expected. The first part of this study reviews the three primary immobilization methods: physical adsorption, covalent binding and entrapment, with their advantages and drawbacks. The second part of this paper includes some polymer applications and their derivatives in the immobilization of enzymes.


Author(s):  
Sikai Mei ◽  
Zhipeng Yin ◽  
Pengcheng Gu ◽  
Hai-Qiao Wang ◽  
Jianhao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document