medium temperature
Recently Published Documents


TOTAL DOCUMENTS

1233
(FIVE YEARS 368)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 46 ◽  
pp. 103915
Author(s):  
Xue-Feng Shao ◽  
Sheng Yang ◽  
Jia-Cheng Lin ◽  
Hao-Ran Teng ◽  
Li-Wu Fan ◽  
...  

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 153
Author(s):  
Agustín M. Delgado-Torres ◽  
Lourdes García-Rodríguez

In the field of desalination powered by renewable energies, the use of solar power cycles exhibits some favorable characteristics, such as the possibility of implementing thermal energy storage systems or a multi-generation scheme (e.g., electricity, water, cooling, hydrogen). This article presents a review of the latest design proposals in which two power cycles of great potential are considered: the organic Rankine cycle and the supercritical CO2 power cycle, the latter of growing interest in recent years. The designs found in the literature are grouped into three main types of systems. In the case of solar ORC-based systems, the option of reverse osmosis as a desalination technology is considered in medium-temperature solar systems with storage but also with low-temperature using solar ponds. In the first case, it is also common to incorporate single-effect absorption systems for cooling production. The use of thermal desalination processes is also found in many proposals based on solar ORC. In this case, the usual configuration implies the cycle’s cooling by the own desalination process. This option is also common in systems based on the supercritical CO2 power cycle where MED technology is usually selected. Designs proposals are reviewed and assessed to point out design recommendations.


2022 ◽  
Author(s):  
O. P. Ostash ◽  
T. O. Prikhna ◽  
V. Ya. Podhurska ◽  
O. S. Kuprin ◽  
M. V. Karpets ◽  
...  

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 143
Author(s):  
Zhangxing Liu ◽  
Rongfeng Zhou ◽  
Wentao Xiong ◽  
Zilong He ◽  
Tao Liu ◽  
...  

Copper–tin alloys are widely used in the machining and molding of sleeves, bearings, bearing housings, gears, etc. They are a material used in heavy-duty, high-speed and high-temperature situations and subject to strong friction conditions due to their high strength, high modulus of elasticity, low coefficient of friction and good wear and corrosion resistance. Although copper–tin alloys are excellent materials, a higher performance of mechanical parts is required under extreme operating conditions. Plastic deformation is an effective way to improve the overall performance of a workpiece. In this study, medium-temperature compression tests were performed on a semi-solid CuSn10P1 alloy using a Gleeble 1500D testing machine at different temperatures (350−440 °C) and strain rates (0.1−10 s−1) to obtain its medium-temperature deformation characteristics. The experimental results show that the filamentary deformation marks appearing during the deformation are not single twins or slip lines, but a mixture of dislocations, stacking faults and twins. Within the experimental parameters, the filamentary deformation marks increase with increasing strain and decrease with increasing temperature. Twinning subdivides the grains into lamellar sheets, and dislocation aggregates are found near the twinning boundaries. The results of this study are expected to make a theoretical contribution to the forming of copper–tin alloys in post-processing processes such as rolling and forging.


2022 ◽  
Author(s):  
Fansen Meng ◽  
Hongjin Tao ◽  
Yan Mi ◽  
Tianyu Yang ◽  
Xuanping Wang ◽  
...  

Abstract Background: Helicobacter pylori (H. pylori) eradication plays a crucial role in gastric cancer prevention, but the antimicrobial resistance of H. pylori is obstructing this elimination process. In this study, we developed nanoclusters (NCs) from Zn0.3Fe2.7O4 nanoparticles using a poly(ethylene glycol)-b-poly(ε-caprolactone)-based nanocarrier as an innovative antibiotic-independent H. pylori management.Results: The nanocluster showed minimal toxicity and maximal biocompatibility. With a low concentration (50 µg/mL) of NCs under a short time period (~2 min) of near-infrared (808nm) irradiation, we kept the culture medium temperature to 41 °C for 20 minutes with continuous irradiation. The heated NCs exhibited efficient photothermal effects and resulted in an excellent inhibition of H. pylori growth, adhesion ability and cell vacuolization ability in in vitro investigation. Transmission electron microscopy showed a dramatic morphologic change after NCs photothermia on H. pylori, including cell wall and membrane rupture, as well as ribosome damage. Besides, levofloxacin and clarithromycin resistance were improved after photothermal treatment in H. pylori NCTC 11637 and/or clinical strains, however metronidazole resistance was unchanged. We also discovered a significant decrease in the biofilm formation of H. pylori under the NCs-based photothermal application, while efflux pump function was unchanged.Conclusions: Based on this novel NCs-based photothermal approach, we were able to demonstrate in vitro a significant inhibition of both H. pylori growth and molecular toxicity, and its improvement in antibiotic resistance alone with the eradication of H. pylori biofilms previously believed to be resistant to conventional antibiotics.


2022 ◽  
Vol 12 (2) ◽  
pp. 546
Author(s):  
Peng Sha ◽  
Weimin Pan ◽  
Jiyuan Zhai ◽  
Zhenghui Mi ◽  
Song Jin ◽  
...  

Medium-temperature (mid-T) furnace baking was conducted at 650 MHz superconducting radio-frequency (SRF) cavity for circular electron positron collider (CEPC), which enhanced the cavity unloaded quality factor (Q0) significantly. In the vertical test (2.0 K), Q0 of 650 MHz cavity reached 6.4 × 1010 at 30 MV/m, which is remarkably high at this unexplored frequency. Additionally, the cavity quenched at 31.2 MV/m finally. There was no anti-Q-slope behavior after mid-T furnace baking, which is characteristic of 1.3 GHz cavities. The microwave surface resistance (RS) was also studied, which indicated both very low Bardeen–Cooper–Schrieffer (BCS) and residual resistance. The recipe of cavity process in this paper is simplified and easy to duplicate, which may benefit the SRF community.


2022 ◽  
Vol 206 ◽  
pp. 114258
Author(s):  
Ning Guo ◽  
Ming Liu ◽  
Jie-Yu Shen ◽  
Hui-Zhen Shen ◽  
Ping Shen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document