scholarly journals Exponential convergence of Chebyshev Tensors

2021 ◽  
pp. 387-389
2021 ◽  
Vol 47 (3) ◽  
Author(s):  
Timon S. Gutleb

AbstractWe present a sparse spectral method for nonlinear integro-differential Volterra equations based on the Volterra operator’s banded sparsity structure when acting on specific Jacobi polynomial bases. The method is not restricted to convolution-type kernels of the form K(x, y) = K(x − y) but instead works for general kernels at competitive speeds and with exponential convergence. We provide various numerical experiments based on an open-source implementation for problems with and without known analytic solutions and comparisons with other methods.


Author(s):  
S. Jelbart ◽  
K. U. Kristiansen ◽  
P. Szmolyan ◽  
M. Wechselberger

AbstractSingular exponential nonlinearities of the form $$e^{h(x)\epsilon ^{-1}}$$ e h ( x ) ϵ - 1 with $$\epsilon >0$$ ϵ > 0 small occur in many different applications. These terms have essential singularities for $$\epsilon =0$$ ϵ = 0 leading to very different behaviour depending on the sign of h. In this paper, we consider two prototypical singularly perturbed oscillators with such exponential nonlinearities. We apply a suitable normalization for both systems such that the $$\epsilon \rightarrow 0$$ ϵ → 0 limit is a piecewise smooth system. The convergence to this nonsmooth system is exponential due to the nonlinearities we study. By working on the two model systems we use a blow-up approach to demonstrate that this exponential convergence can be harmless in some cases while in other scenarios it can lead to further degeneracies. For our second model system, we deal with such degeneracies due to exponentially small terms by extending the space dimension, following the approach in Kristiansen (Nonlinearity 30(5): 2138–2184, 2017), and prove—for both systems—existence of (unique) limit cycles by perturbing away from singular cycles having desirable hyperbolicity properties.


2020 ◽  
Vol 53 (2) ◽  
pp. 3260-3265
Author(s):  
Songsong Cheng ◽  
Xianlin Zeng ◽  
Yiguang Hong

1975 ◽  
Vol 12 (1) ◽  
pp. 155-158 ◽  
Author(s):  
M. Goldstein

Let X1, X2, · ··, Xn be independent random variables such that ai ≦ Xi ≦ bi, i = 1,2,…n. A class of upper bounds on the probability P(S−ES ≧ nδ) is derived where S = Σf(Xi), δ > 0 and f is a continuous convex function. Conditions for the exponential convergence of the bounds are discussed.


Sign in / Sign up

Export Citation Format

Share Document