Detoxification Mechanisms of Heavy Metals by Algal-Bacteria Consortia

2011 ◽  
pp. 441-450 ◽  
Author(s):  
Enrique J. Peña-Salamanca ◽  
Ana Lucia Rengifo-Gallego ◽  
Neyla Benitez-Campo
2016 ◽  
Vol 24 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Anamika Kushwaha ◽  
Radha Rani ◽  
Sanjay Kumar ◽  
Aishvarya Gautam

Heavy metals, such as cobalt, copper, manganese, molybdenum, and zinc, are essential in trace amounts for growth by plants and other living organisms. However, in excessive amounts these heavy metals have deleterious effects. Like other organisms, plants possess a variety of detoxification mechanisms to counter the harmful effects of heavy metals. These include the restriction of heavy metals by mycorrhizal association, binding with plant cell wall and root excretions, metal efflux from the plasma membrane, metal chelation by phytochelatins and metallothioneins, and compartmentalization within the vacuole. Phytoremediation is an emerging technology that uses plants and their associated rhizospheric microorganisms to remove pollutants from contaminated sites. This technology is inexpensive, efficient, and ecofriendly. This review focuses on potential cellular and molecular adaptations by plants that are necessary to tolerate heavy metal stress.


Author(s):  
Enas N. Danial ◽  
Walaa A Majrashi ◽  
Ahlam O. Bin Afif ◽  
Ebtehal S Alamri ◽  
Entesar M. Alhatimi ◽  
...  

Environmental pollution of heavy metals is increasingly becoming a problem and has become of great concern due to the adverse effects it is causing around the world. These inorganic pollutants are being discarded in our waters, soils and into the atmosphere due to the rapidly growing agriculture and metal industries, improper waste disposal, fertilizers, and pesticides. Pollution in industrial areas is a serious environmental concern. Wastewater containing biotoxic substances of heavy metals in the ecosystem is one of the most important environmental and health challenges in our society. Hence, there is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation of inorganic metals (Cr, Hg, Cd, and Pb) released into the environment and to safeguard the ecosystem. Mercury (Hg), Chromium (Cr), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. In this regard, recent advances in microbes-base heavy metal have propelled bioremediation as a prospective alternative to conventional techniques. Heavy metals are nonbiodegradable and could be toxic to microbes. Several microorganisms have evolved to develop detoxification mechanisms to counter the toxic effects of these inorganic metals. Several marine bacteria highly resistant and capable of growing at higher concentrations of Hg, Cr, Cd and Pb and to evaluate their potential to detoxify. Their detoxification efficiency for Hg, Cr, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals.


RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43882-43893
Author(s):  
Mo Zhou ◽  
Yang Zhi ◽  
Yueying Dai ◽  
Jialun Lv ◽  
Yajun Li ◽  
...  

Recently, the levels of heavy metals in medicinal plants have aroused widespread concern because these elements usually enter the food chain through plants and are gradually passed to the final consumers, greatly threatening human health.


Author(s):  
Randall W. Smith ◽  
John Dash

The structure of the air-water interface forms a boundary layer that involves biological ,chemical geological and physical processes in its formation. Freshwater and sea surface microlayers form at the air-water interface and include a diverse assemblage of organic matter, detritus, microorganisms, plankton and heavy metals. The sampling of microlayers and the examination of components is presently a significant area of study because of the input of anthropogenic materials and their accumulation at the air-water interface. The neustonic organisms present in this environment may be sensitive to the toxic components of these inputs. Hardy reports that over 20 different methods have been developed for sampling of microlayers, primarily for bulk chemical analysis. We report here the examination of microlayer films for the documentation of structure and composition.Baier and Gucinski reported the use of Langmuir-Blogett films obtained on germanium prisms for infrared spectroscopic analysis (IR-ATR) of components. The sampling of microlayers has been done by collecting fi1ms on glass plates and teflon drums, We found that microlayers could be collected on 11 mm glass cover slips by pulling a Langmuir-Blogett film from a surface microlayer. Comparative collections were made on methylcel1ulose filter pads. The films could be air-dried or preserved in Lugol's Iodine Several slicks or surface films were sampled in September, 1987 in Chesapeake Bay, Maryland and in August, 1988 in Sequim Bay, Washington, For glass coverslips the films were air-dried, mounted on SEM pegs, ringed with colloidal silver, and sputter coated with Au-Pd, The Langmuir-Blogett film technique maintained the structure of the microlayer intact for examination, SEM observation and EDS analysis were then used to determine organisms and relative concentrations of heavy metals, using a Link AN 10000 EDS system with an ISI SS40 SEM unit. Typical heavy microlayer films are shown in Figure 3.


1959 ◽  
Vol 36 (4) ◽  
pp. 505-508 ◽  
Author(s):  
A.A. Halme ◽  
K.J.V. Hartiala ◽  
K.A. Pekanmaki

1993 ◽  
Vol 88 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Udo W. Stephan ◽  
Gunter Scholz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document