1980 ◽  
Vol 189 (1) ◽  
pp. 125-133 ◽  
Author(s):  
R E Mapleston ◽  
W T Griffiths

Illumination of etiolated plants effects the activity of protochlorophyllide reductase (NADPH-protochlorophyllide oxidoreductase) in the plastids. Constant illumination or a 2-min light-triggering of etiolated plants leads to an approx. 80% decrease in activity of the enzyme, a change that can be reversed by returning the plants to darkness. The change in activity results from an alteration of the Vmax. rather than Km. Despite the fact that exogenous pigments effect the activity of the enzyme in vitro, no correlation could be drawn between the concentrations of pigments in vivo and activity of the enzyme.


1994 ◽  
Vol 104 (1) ◽  
pp. 289-290 ◽  
Author(s):  
R. C. Wilson ◽  
J. B. Cooper

1990 ◽  
Vol 265 (3) ◽  
pp. 789-798 ◽  
Author(s):  
P M Darrah ◽  
S A Kay ◽  
G R Teakle ◽  
W T Griffiths

Putative protochlorophyllide reductase cDNA clones (252 and 113) were isolated from an etiolated-oat (Avena sativa) cDNA library. These were used to indirectly characterize a further clone, p127, isolated from a lambda-phage gt11 cDNA library. The latter (1.15 kb in length) was sequenced, and the derived amino acid sequence was shown to be remarkably similar to that derived from chemical analysis of a CNBr-cleavage fragment of the purified reductase, p127 codes for more than 95% of the reductase protein.


1980 ◽  
Vol 186 (1) ◽  
pp. 267-278 ◽  
Author(s):  
W T Griffiths

1. The substrate specificity of the enzyme protochlorophyllide reductase in barley (Hordeum vulgare) etioplasts was investigated. 2. It was shown that naturally occurring esterified protochlorophyllide and chemically prepared protochlorophyllide methyl ester are not substrates for the enzyme, suggesting an important role for the C-7 carboxylic acid group in binding of the porphyrin to the enzyme. 3. Removal of magnesium from the protochlorophyllide leads to inactivity of the compound as a substrate for the enzyme. However, activity can be restored by replacing the magnesium with zinc, whereas nickel, copper or cobalt failed to restore substrate activity. 4. Binding of the second substrate, NADPH, to the enzyme probably occurs through the 2'-phosphate group in the coenzyme.


Sign in / Sign up

Export Citation Format

Share Document