cdna library
Recently Published Documents


TOTAL DOCUMENTS

1057
(FIVE YEARS 38)

H-INDEX

63
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Akihiro Kishikawa ◽  
Satoshi Hamada ◽  
Ichiro Kamei ◽  
Yosuke Fujimoto ◽  
Kazuhiro Miyazaki ◽  
...  

Abstract The cDNA library prepared from Lentinula edodes, Hokken 600 (H600), primordia was screened by using cDNA expressed specifically in Dictyostelium discoideum prestalk as a probe. Twenty-one clones, Le-Dd 1~21, were isolated from the L. edodes primordia cDNA library. Functional analysis of each gene was carried out by transformation into protoplast cells from L. edodes Mori 252 (M252) mycelia with the overexpression vector pLG-RasF1 of each gene because M252 protoplast cells were transformed with 11-fold higher efficiency than H600 cells. Transformants with the overexpression vector of Le-Dd10 formed a fruiting body at almost the same time as H600, a positive control, although M252, a negative control, did not form a fruiting body under culture conditions. This suggested that Le-Dd10 is involved in the formation of fruiting bodies. Single-strand conformation polymorphism analysis revealed that Le-Dd10 is located on No. 4 linkage group of L. edodes. The properties of Le-Dd10 products were investigated by Western blotting analysis using polyclonal antibodies against GST:Le-Dd10 fusion proteins. As a result, 56-kDa, 27-kDa, and 14-kDa protein bands appeared in primordial and fruiting body stages, although the expected molecular weight of the Le-Dd10 product was 50 kDa.


2022 ◽  
Author(s):  
Joost S S. Mansour ◽  
Konstantinos Anestis ◽  
Fabrice Not ◽  
Uwe John

Many marine protists are not culturable and therefore challenging to study, nonetheless, they are essential in all marine ecosystems. The development of single-cell techniques is allowing for more marine protists to be studied. Such genomic approaches aim to help to disentangle heterotrophic processes such as phagotrophy from osmotrophy and phototrophic-induced anabolic activities. This information will then support cellular and metabolic modeling by better elucidating the physiological mechanisms and quantifying their importance in different scenarios. However, single-cell protocols and low input RNA kits for transcriptomics are usually made for and tested with mammalian cells, as such the feasibility and efficiency of single-cell transcriptomics on highly diverse mixotrophic protists is not always known. Often single-cell transcriptomics of microbial eukaryotes shows low transcript recovery rates and large variability. We report on transcriptomic methods that we have successfully performed on single cells of Acantharia, Strombidium basimorphum, and Prymnesium parvum. This protocol follows up after total RNA extraction (from the protocol at dx.doi.org/10.17504/protocols.io.bp6xmrfn) to prepare cDNA libraries for Illumina sequencing. The described protocol uses the SMART-Seq4 kit (Takara #634891) for cDNA synthesis and amplification, but this can also be successfully performed with the NEBNext kit (NEB #E6421). The NEBNext kit protocol is very similar to the protocol described here and generally the manufacture's protocol can be followed but see the notes at step 4 and step 18 of this protocol, and do the final elution after cDNA purification in 10 mM Tris (pH 8.0). The subsequent cDNA library is prepared following the .


Author(s):  
Shuwen Li ◽  
Di Dong ◽  
Yinruizhi Li ◽  
Mengdi Wang ◽  
Liebao Han ◽  
...  

Author(s):  
Lihong Jiang ◽  
Chang Dong ◽  
Tengfei Liu ◽  
Yi Shi ◽  
Handing Wang ◽  
...  

Cytochrome P450 enzymes (P450s) are a superfamily of heme-thiolate proteins widely existing in various organisms and play a key role in the metabolic network and secondary metabolism. However, the low expression levels and activities have become the biggest challenge for P450s studies. To improve the functional expression of P450s in Saccharomyces cerevisiae, an Arabidopsis thaliana cDNA library was expressed in the betaxanthin-producing yeast strain, which functioned as a biosensor for high throughput screening. Three new target genes AtGRP7, AtMSBP1, and AtCOL4 were identified to improve the functional expression of CYP76AD1 in yeast, with accordingly the accumulation of betaxanthin increased for 1.32-, 1.86-, and 1.10-fold, respectively. In addition, these three targets worked synergistically/additively to improve the production of betaxanthin, representing a total of 2.36-fold improvement when compared with the parent strain. More importantly, these genes were also determined to effectively increase the activity of another P450 enzyme (CYP736A167), catalyzing the hydroxylation of α-santalene to produce Z-α-santalol. Simultaneous overexpression of AtGRP7, AtMSBP1, and AtCOL4 increased α-santalene to Z-α-santalol conversion rate for more than 2.97-fold. The present study reported a novel strategy to improve the functional expression of P450s in S. cerevisiae and promises the construction of platform yeast strains for the production of natural products.


Author(s):  
Youngjae Oh ◽  
Seonghee Lee ◽  
Renee Arielle Rioux ◽  
Pratibha Singh ◽  
Melissa H Jia ◽  
...  

Sheath blight is a serious rice disease worldwide and genes involved in resistance remain unclear. In the present study, a virulent field isolate of Rhizoctonia solani was used to inoculate detached leaves of a sheath blight resistant rice cultivar ‘Jasmine 85’, a suppression subtractive cDNA library was constructed using RNA isolated 16 hours post inoculation (hpi), and differentially expressed genes were identified from the cDNA library. A total of 159 uniquely expressed sequence tags were identified, including 105 from rice with enrichment in categories related to cellular response, molecular signaling and host defense. Coupled with gene expression studies by DNA microarray, 27 highly induced genes involved in signal transduction and defense responses were identified within 16 hpi. Three members of the ABC transporter gene family (OsABC1, OsABC9 and OsABC12) encoding pleiotropic drug resistance (PDR)-like ATP binding cassette (ABC) transporters were mapped to different sheath blight resistance QTL and their differential expressions were validated. Three high-resolution melting (HRM) markers were developed from these ABC gene family members to distinguish alleles between sheath blight susceptible cultivar ‘Lemont’ and resistant cultivar ‘Jasmine 85’. Association of sheath blight resistance to these HRM markers was examined in 77 recombinant inbred lines derived from the cross between ‘Jasmine 85’ and “Lemont”. The OsABC9 gene located in a major sheath blight resistance QTL qShB9-2 showed a major contribution to sheath blight resistance. These results are useful for marker assisted section and functional validation of the ABC genes in sheath blight disease resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingang Wang ◽  
Qinghua Shan ◽  
Ye Ran ◽  
Dexiang Sun ◽  
Haizhen Zhang ◽  
...  

The gene encoding a putative phosphatidate phosphatase (PAP) from tolerant saline-alkali (TSA) Chlorella, ChPAP, was identified from a yeast cDNA library constructed from TSA Chlorella after a NaCl treatment. ChPAP expressed in yeast enhanced its tolerance to NaCl and sorbitol. The ChPAP protein from a GFP-tagged construct localized to the plasma membrane and the lumen of vacuoles. The relative transcript levels of ChPAP in Chlorella cells were strongly induced by NaCl and sorbitol as assessed by northern blot analyses. Thus, ChPAP may play important roles in promoting Na-ion movement into the cell and maintaining the cytoplasmic ion balance. In addition, ChPAP may catalyze diacylglycerol pyrophosphate to phosphatidate in vacuoles.


2021 ◽  
Author(s):  
Flora C. Y. Lee ◽  
Anob M. Chakrabarti ◽  
Heike Hänel ◽  
Elisa Monzón-Casanova ◽  
Martina Hallegger ◽  
...  

AbstractCrosslinking and Immunoprecipitation (CLIP) is a powerful technique to obtain transcriptome-wide maps of in vivo protein-RNA interactions, which are important to understand the post-transcriptional mechanisms mediated by RNA binding proteins (RBPs). Many variant CLIP protocols have been developed to improve the efficiency and convenience of cDNA library preparation. Here we describe an improved individual nucleotide resolution CLIP protocol (iiCLIP), which can be completed within 4 days from UV crosslinking to libraries for sequencing. For benchmarking, we directly compared PTBP1 iiCLIP libraries with the iCLIP2 protocol produced under standardised conditions, and with public eCLIP and iCLIP PTBP1 data. We visualised enriched motifs surrounding the identified crosslink positions and RNA maps of these crosslinks around the alternative exons regulated by PTBP1. Notably, motif enrichment was higher in iiCLIP and iCLIP2 in comparison to public eCLIP and iCLIP, and we show how this impacts the specificity of RNA maps. In conclusion, iiCLIP is technically convenient and efficient, and enables production of highly specific datasets for identifying RBP binding sites.


2021 ◽  
Vol 22 (16) ◽  
pp. 8712
Author(s):  
Md. Samiul Islam ◽  
Gamarelanbia Mohamed ◽  
Shakil Ahmed Polash ◽  
Md. Amit Hasan ◽  
Razia Sultana ◽  
...  

Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants' immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.


2021 ◽  
Vol 1152 ◽  
pp. 338281
Author(s):  
Fangfang Wang ◽  
Hui Wang ◽  
Pengbo Zhang ◽  
Fengxia Su ◽  
Honghong Wang ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2643
Author(s):  
Mohamed F. Hassan ◽  
Abdelrahman M. Qutb ◽  
Wubei Dong

Antimicrobial peptides (AMPs) are small molecules consisting of less than fifty residues of amino acids. Plant AMPs establish the first barrier of defense in the innate immune system in response to invading pathogens. The purpose of this study was to isolate new AMPs from the Zea mays L. inbred line B73 and investigate their antimicrobial activities and mechanisms against certain essential plant pathogenic bacteria. In silico, the Collection of Anti-Microbial Peptides (CAMPR3), a computational AMP prediction server, was used to screen a cDNA library for AMPs. A ZM-804 peptide, isolated from the Z. mays L. inbred line B73 cDNA library, was predicted as a new cationic AMP with high prediction values. ZM-804 was tested against eleven pathogens of Gram-negative and Gram-positive bacteria and exhibited high antimicrobial activities as determined by the minimal inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). A confocal laser scanning microscope observation showed that the ZM-804 AMP targets bacterial cell membranes. SEM and TEM images revealed the disruption and damage of the cell membrane morphology of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato (Pst) DC3000 caused by ZM-804. In planta, ZM-804 demonstrated antimicrobial activity and prevented the infection of tomato plants by Pst DC3000. Moreover, four virulent phytopathogenic bacteria were prevented from inducing hypersensitive response (HR) in tobacco leaves in response to low ZM-804 concentrations. ZM-804 exhibits low hemolytic activity against mouse red blood cells (RBCs) and is relatively safe for mammalian cells. In conclusion, the ZM-804 peptide has a strong antibacterial activity and provides an alternative tool for plant disease control. Additionally, the ZM-804 peptide is considered a promising candidate for human and animal drug development.


Sign in / Sign up

Export Citation Format

Share Document