scholarly journals Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials

2020 ◽  
Vol 32 (29) ◽  
pp. 2000953 ◽  
Author(s):  
Bingnan Han ◽  
Yuxuan Lin ◽  
Yafang Yang ◽  
Nannan Mao ◽  
Wenyue Li ◽  
...  
Author(s):  
Noam Auslander ◽  
Ayal B. Gussow ◽  
Sean Benler ◽  
Yuri I. Wolf ◽  
Eugene V. Koonin

SummaryAdvances in metagenomics enable massive discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. The existing methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct bacteriophage families. We present Seeker, a deep-learning tool for reference-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and clean differentiation of phage sequences from bacterial ones, even for phages with little sequence similarity to established phage families. We comprehensively validate Seeker’s ability to identify unknown phages and employ Seeker to detect unknown phages, some of which are highly divergent from known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly python package (https://github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.


Author(s):  
Vitoantonio Bevilacqua ◽  
Antonio Brunetti ◽  
Gianpaolo Francesco Trotta ◽  
Leonarda Carnimeo ◽  
Francescomaria Marino ◽  
...  

Introduction and objective: Computer Aided Decision (CAD) systems based on Medical Imaging could support radiologists in grading Hepatocellular carcinoma (HCC) by means of Computed Tomography (CT) images, thus avoiding medical invasive procedures such as biopsies. The identification and characterization of Regions of Interest (ROIs) containing lesions is an important phase allowing an easier classification in two classes of HCCs. Two steps are needed for the detection of lesioned ROIs: a liver isolation in each CT slice and a lesion segmentation. Materials and methods: Materials consist in abdominal CT hepatic lesion from 18 patients subjected to liver transplant, partial hepatectomy, or US-guided needle biopsy. Several approaches are implemented to segment the region of liver and, then, detect the lesion ROI. Results: A Deep Learning approach using Convolutional Neural Network is followed for HCC grading. The obtained good results confirm the robustness of the segmentation algorithms leading to a more accurate classification.


2020 ◽  
Vol 48 (21) ◽  
pp. e121-e121
Author(s):  
Noam Auslander ◽  
Ayal B Gussow ◽  
Sean Benler ◽  
Yuri I Wolf ◽  
Eugene V Koonin

Abstract Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker's ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.


Author(s):  
Vitoantonio Bevilacqua ◽  
Antonio Brunetti ◽  
Gianpaolo Francesco Trotta ◽  
Leonarda Carnimeo ◽  
Francescomaria Marino ◽  
...  

Introduction and objective: Computer Aided Decision (CAD) systems based on Medical Imaging could support radiologists in grading Hepatocellular carcinoma (HCC) by means of Computed Tomography (CT) images, thus avoiding medical invasive procedures such as biopsies. The identification and characterization of Regions of Interest (ROIs) containing lesions is an important phase allowing an easier classification in two classes of HCCs. Two steps are needed for the detection of lesioned ROIs: a liver isolation in each CT slice and a lesion segmentation. Materials and methods: Materials consist in abdominal CT hepatic lesion from 18 patients subjected to liver transplant, partial hepatectomy, or US-guided needle biopsy. Several approaches are implemented to segment the region of liver and, then, detect the lesion ROI. Results: A Deep Learning approach using Convolutional Neural Network is followed for HCC grading. The obtained good results confirm the robustness of the segmentation algorithms leading to a more accurate classification.


Diabetes ◽  
1992 ◽  
Vol 41 (9) ◽  
pp. 1165-1171 ◽  
Author(s):  
R. Kikkawa ◽  
K. Umemura ◽  
M. Haneda ◽  
N. Kajiwara ◽  
S. Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document