mesangial cells
Recently Published Documents


TOTAL DOCUMENTS

3687
(FIVE YEARS 363)

H-INDEX

104
(FIVE YEARS 10)

2022 ◽  
Vol 23 (2) ◽  
pp. 843
Author(s):  
Feng-Chih Kuo ◽  
Chia-Ter Chao ◽  
Shih-Hua Lin

Chronic kidney disease (CKD) refers to the phenomenon of progressive decline in the glomerular filtration rate accompanied by adverse consequences, including fluid retention, electrolyte imbalance, and an increased cardiovascular risk compared to those with normal renal function. The triggers for the irreversible renal function deterioration are multifactorial, and diabetes mellitus serves as a major contributor to the development of CKD, namely diabetic kidney disease (DKD). Recently, epigenetic dysregulation emerged as a pivotal player steering the progression of DKD, partly resulting from hyperglycemia-associated metabolic disturbances, rising oxidative stress, and/or uncontrolled inflammation. In this review, we describe the major epigenetic molecular mechanisms, followed by summarizing current understandings of the epigenetic alterations pertaining to DKD. We highlight the epigenetic regulatory processes involved in several crucial renal cell types: Mesangial cells, podocytes, tubular epithelia, and glomerular endothelial cells. Finally, we highlight epigenetic biomarkers and related therapeutic candidates that hold promising potential for the early detection of DKD and the amelioration of its progression.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Youxia Liu ◽  
Hongfen Li ◽  
Huyan Yu ◽  
Fanghao Wang ◽  
Junya Jia ◽  
...  

Abstract Background The addition of sialic acid alters IgG from a pro-inflammatory state to an anti-inflammatory state. However, there is a lack of research on the changes of IgG sialylation in IgA nephropathy (IgAN). Methods This study included a total of 184 IgAN patients. The sialylated IgG (SA-IgG), IgG-galactose-deficient IgA1 complex (IgG-Gd-IgA1-IC), IL-6, TNF-α, and TGF-β were detected using commercial ELISA kits. SA-IgG, non-sialylated IgG (NSA-IgG), sialylated IgG-IgA1 complex (SA-IgG-IgA1), and non-sialylated IgG-IgA1 complex (NSA-IgG-IgA1) were purified from IgAN patients and healthy controls (HCs). Results The mean SA-IgG levels in plasma and B lymphocytes in IgAN patients were significantly higher than those of healthy controls. A positive correlation was found between SA-IgG levels in plasma and B lymphocytes. In vitro, the results showed that the release of IgG-Gd-IgA1-IC was significantly decreased in peripheral blood mononuclear cells (PBMCs) cultured with SA-IgG from both IgAN patients and healthy controls. The proliferation ability and the release of IL-6, TNF-α, and TGF-β in human mesangial cells (HMCs) were measured after stimulating with SA-IgG-IgA1-IC and NSA-IgG-IgA1-IC. The mesangial cell proliferation levels induced by NSA-IgG-IgA1-IC derived from IgAN patients were significantly higher than those caused by SA-IgG-IgA1-IC derived from IgAN patients and healthy controls. Compared with NSA-IgG-IgA1 from healthy controls, IgAN-NSA-IgG-IgA1 could significantly upregulate the expression of IL-6 and TNF-α in mesangial cells. The data showed that there weren’t any significant differences in the levels of IL-6, TNF-α, and TGF-β when treated with IgAN-SA-IgG-IgA1 and HC-NSA-IgG-IgA1. Conclusions The present study demonstrated that the sialylation of IgG increased in patients with IgA nephropathy. It exerted an inhibitory effect on the formation of Gd-IgA1-containing immune complexes in PBMCs and the proliferation and inflammation activation in mesangial cells.


2022 ◽  
Author(s):  
Meichun Huang ◽  
Xiuxiu Li ◽  
Liping Zhao ◽  
Huideng Ding ◽  
Jun Liu ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Lu Xia ◽  
Yu Liu ◽  
Zhiwei Zhang ◽  
Yajuan Gong ◽  
Tianyi Yu ◽  
...  

Interleukin-6 (IL-6) overproduction has been considered to contribute to inflammatory damage of glomerular mesangial cells (GMCs) in human mesangial proliferative glomerulonephritis (MsPGN) and its rat model called Thy-1 nephritis (Thy-1N). However, the regulatory mechanisms of IL-6 expression in GMCs upon sublytic C5b-9 timulation remain poorly understood. We found that Krüppel-like factor 4 (KLF4) bound to the IL-6 promoter (−618 to −126 nt) and activated IL-6 gene transcription. Furthermore, lysine residue 224 of KLF4 was acetylated by p300/CBP-associated factor (PCAF), which was important for KLF4-mediated transactivation. Moreover, lysine residue 5 on histone H2B and lysine residue 9 on histone H3 at the IL-6 promoter were also acetylated by PCAF, which resulted in an increase in IL-6 transcription. Besides, NF-κB activation promoted IL-6 expression by elevating the expression of PCAF. Overall, these findings suggest that sublytic C5b-9-induced the expression of IL-6 involves KLF4-mediated transactivation, PCAF-mediated acetylation of KLF4 and histones, and NF-κB activation in GMCs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huixian Li ◽  
Wanhong Lu ◽  
Haiyun Li ◽  
Xiaoling Liu ◽  
Xue Zhang ◽  
...  

Background: IgA nephropathy (IgAN) has a high degree of heterogeneity in clinical and pathological features. Among all subsets of IgAN, the pathogenesis of IgAN with minimal change disease (MCD-IgAN) remained controversial.Methods: We analyzed the clinical and pathological characteristics of MCD-IgAN patients in a retrospective cohort. Patients diagnosed with IgAN, excluding MCD-IgAN, were randomly selected as controls. Levels of plasma galactose-deficient IgA1 (GdIgA1), IgG autoantibodies against GdIgA1, GdIgA1 deposition in the glomerulus, and inflammatory reactivity of circulating poly-IgA1 complexes to cultured mesangial cells were evaluated.Results: Patients with MCD-IgAN had significantly higher levels of proteinuria and estimated glomerular filtration rate (eGFR), lower levels of albumin and urine blood cells, and milder histological lesions by a light microscope compared to IgAN patients, which bears a resemblance to MCD. Lower levels of GdIgA1 (3.41 ± 1.68 vs. 4.92 ± 2.30 μg/ml, p = 0.009) and IgG antiglycan autoantibodies (23.25 ± 22.59 vs. 76.58 ± 71.22 IU/ml, p < 0.001) were found in MCD-IgAN patients than those in IgAN controls. Meanwhile, weaker fluorescence intensities of both IgA and GdIgA1 were observed in the glomerulus of MCD-IgAN patients compared to those in IgAN patients. Furthermore, poly-IgA1 complexes from MCD-IgAN patients induced weaker inflammatory effects on cultured mesangial cells than those from IgAN patients in vitro.Conclusion: The results demonstrated that MCD-IgAN cases represent a dual glomerulopathy, namely, mild IgAN with superimposed MCD, which furthermore provides substantial evidence for the corticosteroids therapy in MCD-IgAN patients as the guidelines recommended.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ming Xia ◽  
Di Liu ◽  
Haiyang Liu ◽  
Juanyong Zhao ◽  
Chengyuan Tang ◽  
...  

Background: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease and poses a global major public health burden. The preparation of Tripterygium wilfordii Hook F (TwHF) is widely applied for treating patients with Immunoglobulin A nephropathy in China, while the molecular mechanisms remain unclear. This study aimed to verify the therapeutic mechanism of TwHF on IgAN by undertaking a holistic network pharmacology strategy in combination with in vitro and in vivo experiments.Methods: TwHF active ingredients and their targets were obtained via the Traditional Chinese Medicine Systems Pharmacology Database. The collection of IgAN-related target genes was collected from GeneCards and OMIM. TwHF-IgAN common targets were integrated and visualized by Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the predominant molecular mechanisms and pathways of TwHF on the treatment of IgAN. The protein-protein interaction network was constructed by the STRING online search tool, and hub genes were identified using R software. The expression of hub gene and related signaling were evaluated in TwHF-treated mice through immunohistochemistry and western blot and further validated in human mesangial cells (HMCs). In addition, Cell counting kit 8 (CCK8) and flow cytometry were used to detect the effects of TwHF on cell proliferation and cell cycle of mesangial cells.Results: A total of 51 active ingredients were screened from TwHF and 61 overlapping targets related to IgAN were considered potential therapeutic targets, GO functions and KEGG analyses demonstrated that these genes were primarily associated with DNA-binding transcription factor binding, lipid and atherosclerosis pathway. Genes with higher degrees including AKT1, CXCL8, MMP9, PTGS2, CASP3, JUN are hub genes of TwHF against IgAN. Verification of hub gene JUN both in vitro and in vivo showed that TwHF significantly attenuated JUN phosphorylation in the kidneys of IgAN mice and aIgA1-activated HMCs, meanwhile suppressing HMCs proliferation and arresting G1-S cell cycle progression.Conclusion: Our research strengthened the mechanisms of TwHF in treating IgAN, inhibition of JUN activation may play a pivotal role in TwHF in alleviating IgAN renal injury.


2021 ◽  
Vol 37 (1) ◽  
pp. 178-188
Author(s):  
Huankai Yao ◽  
Wenting Zhang ◽  
Feng Yang ◽  
Fengwei Ai ◽  
Dan Du ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wojciech K. Jankiewicz ◽  
Scott D. Barnett ◽  
Anna Stavniichuk ◽  
Sung Hee Hwang ◽  
Bruce D. Hammock ◽  
...  

Kidney injury from antiangiogenic chemotherapy is a significant clinical challenge, and we currently lack the ability to effectively treat it with pharmacological agents. Thus, we set out to investigate whether simultaneous soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) inhibition using a dual sEH/COX-2 inhibitor PTUPB could be an effective strategy for treating antiangiogenic therapy-induced kidney damage. We used a multikinase inhibitor, sorafenib, which is known to cause serious renal side effects. The drug was administered to male Sprague–Dawley rats that were on a high-salt diet. Sorafenib was administered over the course of 56 days. The study included three experimental groups; 1) control group (naïve rats), 2) sorafenib group [rats treated with sorafenib only (20 mg/kg/day p.o.)], and 3) sorafenib + PTUPB group (rats treated with sorafenib only for the initial 28 days and subsequently coadministered PTUPB (10 mg/kg/day i.p.) from days 28 through 56). Blood pressure was measured every 2 weeks. After 28 days, sorafenib-treated rats developed hypertension (161 ± 4 mmHg). Over the remainder of the study, sorafenib treatment resulted in a further elevation in blood pressure through day 56 (200 ± 7 mmHg). PTUPB treatment attenuated the sorafenib-induced blood pressure elevation and by day 56, blood pressure was 159 ± 4 mmHg. Urine was collected every 2 weeks for biochemical analysis. After 28 days, sorafenib rats developed pronounced proteinuria (9.7 ± 0.2 P/C), which intensified significantly (35.8 ± 3.5 P/C) by the end of day 56 compared with control (2.6 ± 0.4 P/C). PTUPB mitigated sorafenib-induced proteinuria, and by day 56, it reduced proteinuria by 73%. Plasma and kidney tissues were collected on day 56. Kidney histopathology revealed intratubular cast formation, interstitial fibrosis, glomerular injury, and glomerular nephrin loss at day 56 in sorafenib-treated rats. PTUPB treatment reduced histological features by 30%–70% compared with the sorafenib-treated group and restored glomerular nephrin levels. Furthermore, PTUPB also acted on the glomerular permeability barrier by decreasing angiotensin-II-induced glomerular permeability to albumin. Finally, PTUPB improved in vitro the viability of human mesangial cells. Collectively, our data demonstrate the potential of using PTUPB or dual sEH/COX-2 inhibition as a therapeutic strategy against sorafenib-induced glomerular nephrotoxicity.


2021 ◽  
Vol 140 ◽  
pp. 225-232
Author(s):  
Jiaojiao Shen ◽  
Qing Wu ◽  
Tingyu Liang ◽  
Jian Zhang ◽  
Jiayuan Bai ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
pp. e000569
Author(s):  
Zhaomin Mao ◽  
Ying Tan ◽  
Feng Yu ◽  
Minghui Zhao

ObjectiveProteomic approach was applied to identify candidate biomarkers of chronicity in patients with proliferative lupus nephritis (LN), and their clinicopathological significance and prognostic values were investigated.MethodsThis study recruited 10 patients with proliferative LN and 6 normal controls (NCs) with proteomic data to compare protein expression profiles, 58 patients with proliferative LN and 10 NCs to verify proteomic data by immunohistochemistry, and 14 patients with proliferative LN with urine samples to evaluate the urinary expression of the biomarker by western blot assay. The composite endpoints included end-stage renal disease and ≥50% reduction from baseline estimated glomerular filtration rate (eGFR).ResultsProteomics detected 48 proteins upregulated in the group with chronicity index (CI) ≥1 compared with the CI=0 and NC groups. Further pathway analysis was enriched in ‘other glycan degradation’. Neuraminidase 1 (NEU1), the most predominant protein in the pathway of other glycan degradation, was highly expressed in the kidney of patients with proliferative LN and could co-localise with podocyte, mesangial cells, endothelial cells and tubule cells. NEU1 expression in the tubulointerstitium area was significantly higher in the CI ≥1 group compared with the CI=0 and NC groups. Moreover, NEU1 expression was significantly correlated with serum creatinine value, eGFR and CI scores, respectively. Urinary NEU1 excretion in the CI ≥1 group was higher than in the CI=0 group and was also positively correlated with CI scores. Furthermore, the high expression of renal NEU1 was identified as an independent risk factor for renal prognosis by multivariate Cox regression analysis (HR, 6.462 (95% CI 1.025 to 40.732), p=0.047).ConclusionsRenal NEU1 expression was associated with pathological CI scores and renal outcomes in patients with proliferative LN.


Sign in / Sign up

Export Citation Format

Share Document