Overcoming Fill Factor Reduction in Ternary Polymer Solar Cells by Matching the Highest Occupied Molecular Orbital Energy Levels of Donor Polymers

2017 ◽  
Vol 8 (9) ◽  
pp. 1702251 ◽  
Author(s):  
Jihoon Lee ◽  
Vellaiappillai Tamilavan ◽  
Kyung Hwan Rho ◽  
Sangha Keum ◽  
Ki Hong Park ◽  
...  
2017 ◽  
Vol 5 (32) ◽  
pp. 16702-16711 ◽  
Author(s):  
Jisoo Shin ◽  
Min Kim ◽  
Boseok Kang ◽  
Jaewon Lee ◽  
Heung Gyu Kim ◽  
...  

The control of the molecular energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is crucial to the design of highly efficient polymer solar cells (PSCs).


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4100 ◽  
Author(s):  
Hugo Gaspar ◽  
Flávio Figueira ◽  
Karol Strutyński ◽  
Manuel Melle-Franco ◽  
Dzmitry Ivanou ◽  
...  

Novel C60 and C70 N-methyl-fulleropyrrolidine derivatives, containing both electron withdrawing and electron donating substituent groups, were synthesized by the well-known Prato reaction. The corresponding highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels were determined by cyclic voltammetry, from the onset oxidation and reduction potentials, respectively. Some of the novel fullerenes have higher LUMO levels than the standards PC61BM and PC71BM. When tested in PffBT4T-2OD based polymer solar cells, with the standard architecture ITO/PEDOT:PSS/Active-Layer/Ca/Al, these fullerenes do not bring about any efficiency improvements compared to the standard PC71BM system, however they show how the electronic nature of the different substituents strongly affects the efficiency of the corresponding organic photovoltaic (OPV) devices. The functionalization of C70 yields a mixture of regioisomers and density functional theory (DFT) calculations show that these have systematically different electronic properties. This electronic inhomogeneity is likely responsible for the lower performance observed in devices containing C70 derivatives. These results help to understand how new fullerene acceptors can affect the performance of OPV devices.


RSC Advances ◽  
2020 ◽  
Vol 10 (71) ◽  
pp. 43508-43513
Author(s):  
Di Zhao ◽  
Pengcheng Jia ◽  
Ling Li ◽  
Yang Tang ◽  
Qiuhong Cui ◽  
...  

The use of ternary polymer solar cells (PSCs) is a promising strategy to enhance photovoltaic performance while improving the fill factor (FF) of a device, but is still a challenge due to the complicated morphology.


2015 ◽  
Vol 80 (8) ◽  
pp. 997-1008 ◽  
Author(s):  
Maryam Dehestani ◽  
Leila Zeidabadinejad

Topological analyses of the electron density using the quantum theory of atoms in molecules (QTAIM) have been carried out at the B3PW91/6-31g (d) theoretical level, on bis(pyrazol-1-yl)methanes derivatives 9-(4-(di (1H-pyrazol-1-yl)-methyl)phenyl)-9H-carbazole (L) and its zinc(II) complexes: ZnLCl2 (1), ZnLBr2 (2) and ZnLI2 (3). The topological parameters derived from Bader theory were also analyzed; these are characteristics of Zn-bond critical points and also of ring critical points. The calculated structural parameters are the frontier molecular orbital energies highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), hardness (?), softness (S), the absolute electronegativity (?), the electrophilicity index (?) and the fractions of electrons transferred (?N) from ZnLX2 complexes to L. The numerous correlations and dependencies between energy terms of the Symmetry Adapted Perturbation Theory approach (SAPT), geometrical, topological and energetic parameters were detected and described.


Author(s):  
Minas M. Stylianakis ◽  
Dimitriοs M. Kosmidis ◽  
Katerina Anagnostou ◽  
Christos Polyzoidis ◽  
Miron Krassas ◽  
...  

A novel solution-processed graphene-based material was synthesized by treating graphene oxide (GO) with 2,5,7-trinitro-9-oxo-fluorenone-4-carboxylic acid (TNF-COOH) moieties, via simple synthetic routes. The yielded molecule N-[(carbamoyl-GO)ethyl]-N’-[(carbamoyl)-(2,5,7-trinitro-9-oxo-fluorene)] (GO-TNF) was thoroughly characterized and it was shown that it presents favorable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels to function as a bridge component between the polymeric donor poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) (PTB7) and the fullerene derivative acceptor [6,6]-phenyl-C71-butyric-acid-methylester (PC71BM). In this context, a GO-TNF based ink was prepared and directly incorporated within the binary photoactive layer, in different volume ratios (1-3% ratio to the blend), for the effective realization of inverted ternary organic solar cells (OSCs) of the structure ITO/PFN/PTB7:GO-TNF:PC71BM/MoO3/Al. The addition of 2% v/v GO-TNF ink led to a champion power conversion efficiency (PCE) of 8.71% that was enhanced by ~13% as compared to the reference cell.


1967 ◽  
Vol 22 (2) ◽  
pp. 170-175 ◽  
Author(s):  
Walter A. Yeranos ◽  
David A. Hasman

Using the recently proposed reciprocal mean for the semi-empirical evaluation of resonance integrals, as well as approximate SCF wave functions for Co3+, the one-electron molecular energy levels of Co (NH3) 3+, Co (NH3) 5Cl2+, and Co (NH3) 4Cl21+ have been redetermined within the WOLFSBERG–HELMHOLZ approximation. The outcome of the study fits remarkably well with the observed electronic transitions in the u.v. spectra of these complexes and prompts different band assignments than previously suggested.


Sign in / Sign up

Export Citation Format

Share Document