Advanced High‐Voltage All‐Solid‐State Li‐Ion Batteries Enabled by a Dual‐Halogen Solid Electrolyte

2021 ◽  
pp. 2100836
Author(s):  
Shumin Zhang ◽  
Feipeng Zhao ◽  
Shuo Wang ◽  
Jianwen Liang ◽  
Jian Wang ◽  
...  
2016 ◽  
Vol 4 (43) ◽  
pp. 17025-17032 ◽  
Author(s):  
Hyun Woo Kim ◽  
Palanisamy Manikandan ◽  
Young Jun Lim ◽  
Jin Hong Kim ◽  
Sang-cheol Nam ◽  
...  

Concerning the safety aspects of high-voltage Li-ion batteries, a pelletized hybrid solid electrolyte (HSE) was prepared by blending Li7La3Zr2O12 (LLZO) ceramic particles and an ionic liquid electrolyte (ILE) for use in pseudo-solid-state Li-ion batteries.


2018 ◽  
Vol 165 (5) ◽  
pp. A957-A962 ◽  
Author(s):  
Seon-Joo Choi ◽  
Sang-Hun Lee ◽  
Yoon-Cheol Ha ◽  
Ji-Hyun Yu ◽  
Chil-Hoon Doh ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 408
Author(s):  
Katja Waetzig ◽  
Christian Heubner ◽  
Mihails Kusnezoff

All-solid-state batteries (ASSB) are considered promising candidates for future energy storage and advanced electric mobility. When compared to conventional Li-ion batteries, the substitution of Li-ion conductive, flammable liquids by a solid electrolyte and the application of Li-metal anodes substantially increase safety and energy density. The solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) provides high Li-ion conductivity of about 10−3 S/cm and is considered a highly promising candidate for both the solid electrolyte-separator and the ionically conductive part of the all-solid state composite cathode, consisting of the cathode material, the solid electrolyte, and an electron conductor. Co-sintering of the composite cathode is a sophisticated challenge, because temperatures above 1000 °C are typically required to achieve the maximum ionic conductivity of LATP but provoke reactions with the cathode material, inhibiting proper electrochemical functioning in the ASSB. In the present study, the application of sintering aids with different melting points and their impact on the sinterability and the conductivity of LATP were investigated by means of optical dilatometry and impedance spectroscopy. The microstructure of the samples was analyzed by SEM. The results indicate that the sintering temperature can be reduced below 800 °C while maintaining high ionic conductivity of up to 3.6 × 10−4 S/cm. These insights can be considered a crucial step forward towards enable LATP-based composite cathodes for future ASSB.


2016 ◽  
Vol 4 (9) ◽  
pp. 3253-3266 ◽  
Author(s):  
Yizhou Zhu ◽  
Xingfeng He ◽  
Yifei Mo

This study provides the understanding and design strategy of solid electrolyte–electrode interfaces to improve electrochemical performance of all-solid-state Li-ion batteries.


2020 ◽  
Vol 5 (2) ◽  
pp. 533-539 ◽  
Author(s):  
Kern-Ho Park ◽  
Kavish Kaup ◽  
Abdeljalil Assoud ◽  
Qiang Zhang ◽  
Xiaohan Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document