scholarly journals Ineffective erythropoiesis in the spleen of a patient with pyruvate kinase deficiency

2003 ◽  
Vol 74 (1) ◽  
pp. 68-72 ◽  
Author(s):  
Shin Aizawa ◽  
Urara Kohdera ◽  
Masaki Hiramoto ◽  
Yutaka Kawakami ◽  
Ken-ichi Aisaki ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Annelies Johanna van Vuren ◽  
Eduard Johannes van Beers ◽  
Richard van Wijk

Pyruvate kinase deficiency (PKD) is a rare congenital hemolytic anemia caused by mutations in the PKLR gene. Here, we review pathophysiological aspects of PKD, focusing on the interplay between pyruvate kinase (PK)-activity and reticulocyte maturation in the light of ferroptosis, an iron-dependent process of regulated cell death, and in particular its key player glutathione peroxidase 4 (GPX4). GPX4 plays an important role in mitophagy, the key step of peripheral reticulocyte maturation and GPX4 deficiency in reticulocytes results in a failure to fully mature. Mitophagy depends on lipid oxidation, which is under physiological conditions controlled by GPX4. Lack of GPX4 leads to uncontrolled auto-oxidation, which will disrupt autophagosome maturation and thereby perturb mitophagy. Based on our review, we propose a model for disturbed red cell maturation in PKD. A relative GPX4 deficiency occurs due to glutathione (GSH) depletion, as cytosolic L-glutamine is preferentially used in the form of α-ketoglutarate as fuel for the tricarboxylic acid (TCA) cycle at the expense of GSH production. The relative GPX4 deficiency will perturb mitophagy and, subsequently, results in failure of reticulocyte maturation, which can be defined as late stage ineffective erythropoiesis. Our hypothesis provides a starting point for future research into new therapeutic possibilities, which have the ability to correct the oxidative imbalance due to lack of GPX4.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1993-1993
Author(s):  
Anna Zaninoni ◽  
Roberta Russo ◽  
Roberta Marra ◽  
Elisa Fermo ◽  
Immacolata Andolfo ◽  
...  

Abstract Iron loading anemias are characterized by ineffective erythropoiesis and iron overload. This group of anemias includes thalassemia syndromes, congenital dyserythropoietic anemias (CDA), and some forms of congenital hemolytic anemias. Among them pyruvate kinase deficiency (PKD) has been shown to develop iron overload also in absence of transfusions suggesting dyserythropoietic features. Moreover, severe forms can be misdiagnosed as CDA due to bone marrow abnormalities and ineffective erythropoiesis further supporting this evidences. The hormone erythroferrone (hERFE) is produced by erythroblasts in response to erythropoietin (EPO), and acts by suppressing hepcidin, thereby increasing iron absorption and mobilisation for erythropoiesis demand. The ERFE-hepcidin axis seems to play a crucial role in the pathogenesis of these disorders; an increased erythroferrone release by immature erythroid cells results in hepcidin suppression and secondary iron overload that could finally results in ineffective erythropoiesis and anemia. To investigate the pathophysiological basis of iron overload in PKD, we analysed the levels of hERFE, EPO, hepcidin, and soluble transferrin receptor (sTFR) in a large group of 41 PKD patients equally distributed by gender, age and severity. The results were analysed in comparison with two groups of patients affected by hemolytic anemia with overt dyserythropoiesis (42 patients with CDA type II) and with congenital hemolytic anemia due to RBC membrane defects (51 patients with hereditary spherocytosis [HS]), respectively. Demographic, hematologic, and biochemical features of the three groups of patients are reported in the table. Among the PKD patients, 18/41 were <18 yrs, median Hb level at the time of the study was 9.05g/dL (range 5.5-14.5), 12 underwent splenectomy, 28 ever received at least three transfusions their life, 14 of them transfusion dependent (>6 tx/yrs). Mean ferritin levels at the time of the study were 546 ng/ml (range 59-4990), 15/41 patients requiring chelation therapy for iron overload developed also in absence of transfusions. As expected, CDAII patients showed decreased hepcidin levels (3.74 ng/mL; n.v. 17.25, P<0.001) associated with increased erythropoietin (62.7 IU/L, n.v. 6.5, P=0.01) and hERFE (24.8 ng/mL, n.v. 1, P<0.0001). On the contrary, HS showed increased hepcidin, with less marked increased of ERFE (9.9 ng/mL, P=0.02) and EPO (36.4IU/L, P=0.005). In PKD patients we observed decreased hepcidin levels (7.15 ng/mL, P=0.03)), increased hERFE (18ng/mL, P<0.0001) and EPO (75.6 IU/L, P=0.009). Instead, sTFR was equally increased in the three groups of patients (Figure). Interestingly, by comparing the three groups of patients, PKD showed dyserythropoietic features as evidenced by the observation of intermediate values between HS and CDAII of hepcidin (P=0.007 PKD v CDAII and P=0.0002 PKD vs HS), hEFRE, and sTFR. This study provides the first analysis of the main regulators of systemic iron homeostasis in PK deficiency compared either with the model of a structural RBC defect (HS) or with the typical model of dyserythropoietic anemia with ineffective erythropoiesis, such as CDAII. These data provide evidence of the dyserythropoietic features of PK deficiency, underlining the need of accurate diagnosis and paving the way of novel therapeutic approaches in PK deficiency. Zaninoni A. and Russo R. equally contributed to the study Figure 1 Figure 1. Disclosures Fattizzo: Kira: Speakers Bureau; Alexion: Speakers Bureau; Novartis: Speakers Bureau; Momenta: Honoraria, Speakers Bureau; Annexon: Consultancy; Apellis: Speakers Bureau; Amgen: Honoraria, Speakers Bureau. Barcellini: Incyte: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria; Bioverativ: Membership on an entity's Board of Directors or advisory committees; Agios: Honoraria, Research Funding; Alexion Pharmaceuticals: Honoraria. Iolascon: Bluebird Bio: Other: Advisory Board; Celgene: Other: Advisory Board. Bianchi: Agios pharmaceutics: Consultancy, Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ahalyaa Sivashangar ◽  
Lallindra Gooneratne ◽  
Barnaby Clark ◽  
David Rees ◽  
Saroj Jayasinghe ◽  
...  

Abstract Background Erythrocyte pyruvate kinase is expressed under the control of the PKLR gene located on chromosome 1q21. Pyruvate kinase catalyzes the final steps of the glycolytic pathway and creates 50% of the red cell total adenosine triphosphate. Pyruvate kinase deficiency is the commonest glycolytic defect causing congenital non-spherocytic hemolytic anemia inherited in an autosomal recessive trait in which homozygotes and compound heterozygotes are common. Over 200 mutations have been described in patients with pyruvate kinase deficiency. This case report identifies a new pathogenic variant in PKLR gene detected in a patient with severe pyruvate kinase deficiency. Case presentation A Sri Lankan Sinhalese girl who developed neonatal anemia and jaundice within 24 hours of birth with mild hepatomegaly. She was from a nonconsanguineous marriage and had two siblings who had no hematological disorders. She had repeated admissions due to similar illnesses and at the age of 8 years was found to have pyruvate kinase deficiency associated with a novel homozygous pathogenic variant c.507+1delG in the PKLR gene. Conclusions A novel genetic variant in PKLR gene, consistent with pyruvate kinase deficiency, was detected in a Sri Lankan girl. This genetic variant may be specific to the Asian population and requires further studies.


Author(s):  
Berenice Milanesio ◽  
Carolina Pepe ◽  
Lucas A. Defelipe ◽  
Silvia Eandi Eberle ◽  
Vanesa Avalos Gomez ◽  
...  

1980 ◽  
Vol 1 (11) ◽  
pp. 531-532 ◽  
Author(s):  
H. H. Salem ◽  
M. B. Van Der Weyden ◽  
B. G. Firkin

Author(s):  
Claire Laas ◽  
Christopher Lambert ◽  
Tania Senior McKenzie ◽  
Ewart Sheldon ◽  
Philip Davidson ◽  
...  

Author(s):  
Sara Fañanas-Baquero ◽  
Oscar Quintana-Bustamante ◽  
Daniel P. Dever ◽  
Omaira Alberquilla ◽  
Rebeca Sanchez ◽  
...  

1974 ◽  
Vol 334 (2) ◽  
pp. 361-367 ◽  
Author(s):  
Th.J.C. Van Berkel ◽  
G.E.J. Staal ◽  
J.F. Koster ◽  
J.G. Nyessen ◽  
L. van Milligen-Boersma

Sign in / Sign up

Export Citation Format

Share Document