First evidence of Smith-Magenis syndrome in mother and daughter due to a novel RAI mutation

2016 ◽  
Vol 173 (1) ◽  
pp. 231-238 ◽  
Author(s):  
Fabio Acquaviva ◽  
Maria Elena Sana ◽  
Matteo Della Monica ◽  
Michele Pinelli ◽  
Diana Postorivo ◽  
...  
Keyword(s):  
2010 ◽  
Author(s):  
Asuncion M. Austria ◽  
A. Marie M. Austria
Keyword(s):  

2013 ◽  
Vol 37 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Wei-Cheng LUO ◽  
Fan-Jiang ZENG ◽  
Bo LIU ◽  
Cong SONG ◽  
Shou-Lan PENG ◽  
...  

1997 ◽  
Vol 136 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Shirley Yang ◽  
Kathryn R. Ayscough ◽  
David G. Drubin

Saccharomyces cerevisiae cells select bud sites according to one of two predetermined patterns. MATa and MATα cells bud in an axial pattern, and MATa/α cells bud in a bipolar pattern. These budding patterns are thought to depend on the placement of spatial cues at specific sites in the cell cortex. Because cytoskeletal elements play a role in organizing the cytoplasm and establishing distinct plasma membrane domains, they are well suited for positioning bud-site selection cues. Indeed, the septin-containing neck filaments are crucial for establishing the axial budding pattern characteristic of MATa and MATα cells. In this study, we determined the budding patterns of cells carrying mutations in the actin gene or in genes encoding actin-associated proteins: MATa/α cells were defective in the bipolar budding pattern, but MATa and MATα cells still exhibit a normal axial budding pattern. We also observed that MATa/α actin cytoskeleton mutant daughter cells correctly position their first bud at the distal pole of the cell, but mother cells position their buds randomly. The actin cytoskeleton therefore functions in generation of the bipolar budding pattern and is required specifically for proper selection of bud sites in mother MATa/α cells. These observations and the results of double mutant studies support the conclusion that different rules govern bud-site selection in mother and daughter MATa/α cells. A defective bipolar budding pattern did not preclude an sla2-6 mutant from undergoing pseudohyphal growth, highlighting the central role of daughter cell bud-site selection cues in the formation of pseudohyphae. Finally, by examining the budding patterns of mad2-1 mitotic checkpoint mutants treated with benomyl to depolymerize their microtubules, we confirmed and extended previous evidence indicating that microtubules do not function in axial or bipolar bud-site selection.


2013 ◽  
Vol 48 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Koichi Ohno ◽  
Tetsuro Nakamura ◽  
Takashi Azuma ◽  
Tatsuo Nakaoka ◽  
Yuichi Takama ◽  
...  

2002 ◽  
Vol 115 (9) ◽  
pp. 1825-1835 ◽  
Author(s):  
Young Y. Ou ◽  
Gary J. Mack ◽  
Meifeng Zhang ◽  
Jerome B. Rattner

The mammalian centrosome consists of a pair of centrioles surrounded by pericentriolar material (PCM). The architecture and composition of the centrosome, especially the PCM, changes during the cell cycle. Recently, a subset of PCM proteins have been shown to be arranged in a tubular conformation with an open and a closed end within the centrosome. The presence of such a specific configuration can be used as a landmark for mapping proteins in both a spatial and a temporal fashion. Such mapping studies can provide information about centrosome organization, protein dynamics,protein-protein interactions as well as protein function. In this study, the centrosomal proteins CEP110 and ninein were mapped in relationship to the tubular configuration. Both proteins were found to exhibit a similar distribution pattern. In the mother centrosome, they were found at both ends of the centrosome tube, including the site of centrosome duplication. However,in the daughter centrosome they were present only at the closed end. At the closed end of the mother and daughter centrosome tube, both CEP110 and ninein co-localized with the centriolar protein CEP250/c-Nap1, which confirms ninein's centriole association and places CEP110 in association with this structure. Importantly, the appearance of CEP110 and ninein at the open end of the daughter centrosome occurred during the telophase-G1 transition of the next cell cycle, concomitant with the maturation of the daughter centrosome into a mother centrosome. Microinjection of antibodies against either CEP110 or ninein into metaphase HeLa cells disrupted the reformation of the tubular conformation of proteins within the centrosome following cell division and consequently led to dispersal of centrosomal material throughout the cytosol. Further, microinjection of antibodies to either CEP110 or ninein into metaphase PtK2 cells not only disrupted the tubular configuration within the centrosome but also affected the centrosome's ability to function as a microtubule organizing center (MTOC). This MTOC function was also disrupted when the antibodies were injected into postmitotic cells. Taken together, our results indicate that: (1) a population of CEP110 and ninein is located in a specific domain within the centrosome, which corresponds to the open end of the centrosome tube and is the site of protein addition associated with maturation of a daughter centrosome into a mother centrosome; and (2) the addition of CEP110 and ninein are essential for the reformation of specific aspects of the interphase centrosome architecture following mitosis as well as being required for the centrosome to function as a MTOC.


Sign in / Sign up

Export Citation Format

Share Document