Wild bonobo and chimpanzee females exhibit broadly similar patterns of behavioral maturation but some evidence for divergence

2019 ◽  
Vol 171 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Sean M. Lee ◽  
Carson M. Murray ◽  
Elizabeth V. Lonsdorf ◽  
Barbara Fruth ◽  
Margaret A. Stanton ◽  
...  
1996 ◽  
Vol 18 (1-2) ◽  
pp. 102-114 ◽  
Author(s):  
Susan E. Fahrbach ◽  
Gene E. Robinson

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Adria C LeBoeuf ◽  
Patrice Waridel ◽  
Colin S Brent ◽  
Andre N Gonçalves ◽  
Laure Menin ◽  
...  

Social insects frequently engage in oral fluid exchange – trophallaxis – between adults, and between adults and larvae. Although trophallaxis is widely considered a food-sharing mechanism, we hypothesized that endogenous components of this fluid might underlie a novel means of chemical communication between colony members. Through protein and small-molecule mass spectrometry and RNA sequencing, we found that trophallactic fluid in the ant Camponotus floridanus contains a set of specific digestion- and non-digestion related proteins, as well as hydrocarbons, microRNAs, and a key developmental regulator, juvenile hormone. When C. floridanus workers’ food was supplemented with this hormone, the larvae they reared via trophallaxis were twice as likely to complete metamorphosis and became larger workers. Comparison of trophallactic fluid proteins across social insect species revealed that many are regulators of growth, development and behavioral maturation. These results suggest that trophallaxis plays previously unsuspected roles in communication and enables communal control of colony phenotypes.


2020 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. Conclusions: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


2008 ◽  
Vol 68 (8) ◽  
pp. 1007-1017 ◽  
Author(s):  
Sabine Krofczik ◽  
Uldus Khojasteh ◽  
Natalie Hempel de Ibarra ◽  
Randolf Menzel

2018 ◽  
Vol 109 ◽  
pp. 47-54 ◽  
Author(s):  
V. Zanni ◽  
L. Değirmenci ◽  
D. Annoscia ◽  
R. Scheiner ◽  
F. Nazzi

Author(s):  
Sylvia Anton ◽  
Wolfgang Rössler

AbstractOlfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.


2011 ◽  
Vol 11 (3) ◽  
pp. 253-261 ◽  
Author(s):  
A. Zayed ◽  
N. L. Naeger ◽  
S. L. Rodriguez-Zas ◽  
G. E. Robinson

Sign in / Sign up

Export Citation Format

Share Document