Crystallization kinetics of poly (L-lactic acid)/montmorillonite nanocomposites under isothermal crystallization condition

2011 ◽  
Vol 124 (3) ◽  
pp. 2216-2226 ◽  
Author(s):  
Jiunn-Jer Hwang ◽  
Su-Mei Huang ◽  
Hsin-Jiant Liu ◽  
Hawn-Chung Chu ◽  
Li-Huei Lin ◽  
...  
2005 ◽  
Vol 13 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Defeng Wu ◽  
Chixing Zhou ◽  
Xie Fan ◽  
Dalian Mao ◽  
Zhang Bian

The melt intercalation method was employed to prepare poly(butylene terepathalate)/montmorillonite nanocomposites, and their microstructure was characterized by wide angle X-ray diffraction and transmission electron microscopy. The XRD results showed that the crystalline plane such as (010), (111), (100) was smaller than that of pristine PBT, which indicates that the crystallite size of PBT in the nanocomposites could be diminished by adding clay. Moreover, the isothermal crystallization kinetics of PBT and PBT/MMT nanocomposites was investigated by differential scanning calorimetry (DSC). During isothermal crystallization, the development of crystallinity with time was analysed by the Avrami equation. The results show that very small amounts of clay dramatically increased the rate of crystallization and high clay concentrations reduced the rate of crystallization at the low crystallization temperatures. At low concentrations of clay, the distance between dispersed platelets was large so it was relatively easy for the additional nucleation sites to incorporate surrounding polymer, and the crystal nucleus was formatted easily. However, at high concentrations of clay, the diffusion of polymer chains to the growing crystallites was hindered by large clay particles, despite the formation of additional nucleation sites by the clay layers. At the higher crystallization temperature, the crystallization of the nanocomposites was slower than that of the pure PBT under the experimental conditions, which means that with the increase in chains mobility at the high crystallization temperature, the crystal nuclei are harder to format, and the hindering effect of clay particles on the polymer chains was stronger than the nucleating effect of the layers. In addition, the activation energies of crystallization for PBT and its nanocomposites were calculated by the Arrhenius relationship, and the results showed that the nanocomposites with a low clay content had the lower activation energy values than PBT, while high amounts of clay increased the activation energy of PBT.


Sign in / Sign up

Export Citation Format

Share Document