isothermal crystallization
Recently Published Documents


TOTAL DOCUMENTS

1553
(FIVE YEARS 203)

H-INDEX

63
(FIVE YEARS 6)

2022 ◽  
Vol 58 (4) ◽  
pp. 73-83
Author(s):  
Hao Huang ◽  
Shuang-Qing Liu ◽  
Cheng-Pei Li ◽  
Shi-Tianle Luo ◽  
Li-Sha Zhao ◽  
...  

In this study, a new organic nucleating agent N, N -bis(stearic acid)-1,4-dicarboxybenzene dihydrazide (PASH) to improve crystallization behavior of poly(L-lactic acid) (PLLA) along with the effect of PASH on melting behavior, thermal stability of PASH-nucleated PLLA was holistically reported. The melt-crystallization process illustrated that PASH as an effective heterogeneous nucleating agent could boost PLLA�s crystallization rate, but increasing PASH concentration and cooling rate conversely inhibited melt-crystallization process of PLLA in this study. With respect to melt-crystallization process, a larger amount of PASH leaded to a shift of cold-crystallization peak to lower temperature level. Isothermal crystallization revealed, in comparison to pure PLLA, that the half time of overall crystallization of PLLA/PASH was significantly decreased with PLLA containing 3 wt% PASH having the minimum t1/2= 67.3 s at 105şC. The different melting behaviors of PLLA/PASH under different conditions were attributed to the nucleating effect of PASH within PLLA. In particular, the melting behavior at a heating rate of 10�C/min after isothermal crystallization depended primarily on the crystallization temperature. Whereas, the impact of crystallization time on melting behavior was negligible. Nonetheless, the melting behavior was influenced by the heating rate after non-isothermal crystallization. The thermal stability of PLLA was detrimental with the addition of PASH owing to a typical drop in onset thermal decomposition temperature.


2022 ◽  
Vol 307 ◽  
pp. 130996
Author(s):  
Shan Zhang ◽  
Chao Wei ◽  
Jingwang Lv ◽  
Haoran Zhang ◽  
Zhilin Shi ◽  
...  

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Jiunn-Jer Hwang ◽  
Su-Mei Huang ◽  
Wen-Yang Lin ◽  
Hsin-Jiant Liu ◽  
Cheng-Chan Chuang ◽  
...  

This study makes use of polycondensation to produce poly (L-lactic acid)-(polyethylene glycols), a biodegradable copolymer, then puts it with organically modified montmorillonite (o-MMT) going through an intercalation process to produce a series of nanocomposites of PLLA-PEG/o-MMT. The exfoliation and intercalation of the montmorillonite-layered structure could be found through X-ray diffraction and transmission electron microscopy. The lower the molecular weight of poly (ethylene glycol), the more obvious the exfoliation and dispersion. The nanocomposites were investigated under non-isothermal crystallization and isothermal crystallization separately via differential scanning calorimetry (DSC). After the adding of o-MMT to PLLA-PEG copolymers, it was found that the PLLA-PEG nanocomposites crystallized slowly and the crystallization peak tended to become broader during the non-isothermal crystallization process. Furthermore, the thermal curve of the non-isothermal melt crystallization process of PLLA-PEG copolymers with different proportions of o-MMT showed that the melting point decreased gradually with the increase of o-MMT content. In the measurement of isothermal crystallization, increasing the o-MMT of the PLLA-PEG copolymers would increase the t1/2 (crystallization half time) for crystallization and decrease the value of ΔHc. However, the present study results suggest that adding o-MMT could affect the crystallization rate of PLLA-PEG copolymers. The o-MMT silicate layer was uniformly dispersed in the PLLA-PEG copolymers, forming a nucleating agent. The crystallization rate and the regularity of the crystals changed with the increase of the o-MMT content, which further affected the crystallization enthalpies.


2021 ◽  
Vol 573 ◽  
pp. 121145
Author(s):  
Zerong Yang ◽  
Raschid Al-Mukadam ◽  
Moritz Stolpe ◽  
Matthias Markl ◽  
Joachim Deubener ◽  
...  

e-Polymers ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 1-11
Author(s):  
Wei Zhang ◽  
Qingyin Wang ◽  
Gongying Wang ◽  
Shaoying Liu

Abstract The effects of isothermal crystallization temperature/time on mechanical properties of bio-based polyester poly(ethylene 2,5-furandicarboxylate) (PEF) were investigated. The intrinsic viscosity, crystallization properties, thermal properties, and microstructure of PEF were characterized using ubbelohde viscometer, X-ray diffraction, polarizing optical microscope, differential scanning calorimetry, and scanning electron microscopy. The PEF sample isothermal crystallized at various temperatures for various times was denoted as PEF-T-t. The results showed that the isothermal crystallization temperature affected the mechanical properties of PEF-T-30 by simultaneously affecting its crystallization properties and intrinsic viscosity. The isothermal crystallization time only affected the crystallization properties of PEF-110-t. The crystallinity of PEF-110-40 was 17.1%. With small crystal size, poor regularity, and α′-crystal, PEF-110-40 can absorb the energy generated in the tensile process to the maximum extent. Therefore, the best mechanical properties can be obtained for PEF-110-40 with the tensile strength of 43.55 MPa, the tensile modulus of 1,296 MPa, and the elongation at a break of 13.36%.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3815
Author(s):  
Wanxin Peng ◽  
Furui Sun ◽  
Yuke Liang ◽  
Jian Kang ◽  
Jinyao Chen ◽  
...  

In this study, one of the commonly used MXene (Ti3C2Tx) and β nucleated isotactic polypropylene (β-iPP)/MXene composites of different compositions were fabricated. The effects of MXene on non-isothermal crystallization and polymorphic behavior of β-iPP/MXene composites were comparatively studied. The non-isothermal crystallization kinetics indicates that for all samples, the lower cooling rates promote composites to crystallize at higher temperatures. When MXene and β-Nucleating agent (β-NA) are added separately, the crystallization temperature of composites shifts towards higher temperatures at all cooling rates. When MXene and β-NA are added simultaneously, the composite shows different cooling rate dependence, and the effects of improving crystallization temperatures is more obvious under rapid cooling. The activation energy of four samples iPP, iPP/MXene, iPP/β-NA, and iPP/MXene/β-NA were −167.5, −185.5, −233.8, and −218.1 kJ/mol respectively, which agree with the variation tendency of crystallization temperatures. The polymorphic behavior analysis obtained from Differential Scanning calorimetry (DSC) is affected by two factors: the ability to form β-crystals and the thermal stability of β-crystals. Because β-crystals tend to recrystallize to α-crystals below a critical temperature, to eliminate the effect of β-α recrystallization, the melting curves at end temperatures Tend = 50 °C and Tend = 100 °C are comparatively studied. The results show that more thermally unstable β-crystals would participate in β-α recrystallization with higher cooling rates. Moreover, thermal stability of β-crystals is improved by adding MXene. To further verify these findings, samples of three different thermal conditions were synthesized and analyzed by DSC, X-Ray Diffraction (XRD), and Polarized Light Optical Microscopy (PLOM), and the results were consistent with the above findings. New understandings of synthesizing β-iPP/MXene composites with adjustable morphologies and polymorphic behavior were proposed.


Sign in / Sign up

Export Citation Format

Share Document