in situ polymerization
Recently Published Documents


TOTAL DOCUMENTS

2069
(FIVE YEARS 554)

H-INDEX

72
(FIVE YEARS 13)

2022 ◽  
Vol 319 ◽  
pp. 126105
Author(s):  
Jiru Wang ◽  
Haibo Zhang ◽  
Yu Zhu ◽  
Zhaoxia Yan ◽  
Hucheng Chai

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 237
Author(s):  
Peng-Yang Huang ◽  
Chen-Yang Huang ◽  
Jia-Wun Li ◽  
Sheng-Yen Shen ◽  
Chih-Chia Cheng ◽  
...  

Through the use of organic/inorganic hybrid dispersants—which are composed of polymeric dispersant and two-dimension nanomaterial graphene oxide (GO)—copper nanoparticles (CuNPs) were found to exhibit nano stability, air-stable characteristics, as well as long-term conductive stability. The polymeric dispersant consists of branched poly(oxyethylene)-segmented esters of trimellitic anhydride adduct (polyethylene glycol−trimethylolpropane−trimellitic anhydride, designated as PTT). PTT acts as a stabilizer for CuNPs, which are synthesized via in situ polymerization and redox reaction of the precursor Cu(CH3COO)2 within an aqueous system, and use graphene oxide to avoid the reduction reaction of CuNPs. The results show that after 30 days of storage the CuNPs/PTT/GO composite film maintains a highly conductive network (9.06 × 10−1 Ω/sq). These results indicate that organic/inorganic PTT/GO hybrid dispersants can effectively maintain the conductivity stability of CuNPs and address the problem of CuNP oxidation. Finally, the new CuNPs/PTT/GO composite film was applied to the electrocardiogram (ECG) smart clothes. This way, a stable and antioxidant-sensing electrode can be produced, which is expected to serve as a long-term ECG monitoring device.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 175
Author(s):  
Priyanka Prakash ◽  
Wing-Hin Lee ◽  
Ching-Yee Loo ◽  
Hau Seung Jeremy Wong ◽  
Thaigarajan Parumasivam

Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers’ natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Sara A. Alqarni

The in-situ polymerization technology was used to successfully produce nanostructured binary nanocomposites (NCs) made from a poly (3-nitrothiophen) matrix (P3NT) that were loaded effectively with nanoparticles (NPs) of silver titanium dioxide (AgTiO2), of varying percentages (10%, 20%, and 30%). A uniform coating of P3NT covers the AgTiO2 NPs. Various methods were performed to confirm the fabrication of the binary P3NT/AgTiO2 NCs adsorbents, such as FTIR, XRD, SEM, and EDX. Both dyes (brilliant green (B.G.) and crystal violet (C.V.)) were removed from liquid media by using the binary P3NT/AgTiO2 NCs. A range of batch adsorption studies was used to optimize various factors that impact the elimination of B.G. or C.V. dyes, including the pH, weight of the binary P3NT/AgTiO2 NC, proportion of AgTiO2 NP, time, and temperature. The pseudo-second-order kinetics ( R 2 = 0.999 ) was better adapted for the adsorption procedure’s empirical data whereby the maximum adsorption capacity of the C.V. dye was 43.10 mg/g and ( R 2 = 0.996 ) the maximum adsorption potential was 40.16 mg/g for B.G. dye, succeeded by the pseudo-second-order kinetics. Moreover, the adhesion of B.G. and C.V. pigments on the layers of NCs involves an endothermic reaction. In addition, the concocted adsorbent not only exhibited strong adsorption characteristics during four consecutive cycles but also possessed a higher potential for its reuse. According to the findings, the NCs might possibly be used as a robust and reusable adsorbent to remove B.G. and C.V. pigments from an aqueous medium.


2022 ◽  
Vol 905 ◽  
pp. 142-146
Author(s):  
Yi Qiao ◽  
Zhen Xing Zhu ◽  
Dong He ◽  
Su Bin Jiang ◽  
Teng Fei Yu ◽  
...  

Heteroatoms-doped ultrathin carbon materials hold great promise for electrochemical energy application. Herein, we develop a salt-templating method to prepare three-dimensional Fe-N co-doped carbon (FeNPC) with ultrathin (~ 5-nm-thick) structural feature. The synthetic procedure involves the following steps: First, fabrication of nanoNaCl templates with uniform particle sizes (~500 nm) via one-pot solution synthesis. Second, fabrication of the precursor by encapsulating of NaCl nanoparticles via the in-situ polymerization of pyrrole monomers under vapor atmosphere. Last, FeNPC formation by subsequent pyrolysis and pickling. The optimized sample displays excellent performance as supercapacitors exhibiting 393.5 F g-1 at 1A g-1 in 6 M KOH. Furthermore, the symmetric supercapacitors assembled with the optimized sample show an energy density of 10.45 Wh kg-1 at a power density of 300 W kg-1 and outstanding cycling stability retaining 93% capacitance at 5A g-1 after 10000 cycles.


Author(s):  
Ron Hoffmann ◽  
Hendrik Naatz ◽  
Andreas Hartwig

AbstractThe properties of nanoparticle–polymer composites strongly depend on the network structure of the polymer matrix. By introducing nanoparticles into a monomer (solution) and subsequently polymerizing it, the formation of the polymer phase influences the mechanical and physicochemical properties of the composite. In this study, semi-conducting indium tin oxide (ITO) nanoparticles were prepared to form a rigid nanoparticle scaffold in which 1,6-hexanediol diacrylate (HDDA), together with an initiator for photo-polymerization, was infiltrated and subsequently polymerized by UV light. During this process, the polymerization reaction was characterized using rapid scan Kubelka–Munk FT-IR spectroscopy and compared to bulk HDDA. The conductivity change of the ITO nanoparticles was monitored and correlated with the polymerization process. It was revealed that the reaction rates of the radical initiation and chain propagation are reduced when cured inside the voids of the nanoparticle scaffold. The degree of conversion is lower for HDDA infiltrated into the mesoporous ITO nanoparticle scaffold compared to purely bulk-polymerized HDDA. Graphical abstract


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 168-180
Author(s):  
Keyu Zhu ◽  
Zhenlin Jiang ◽  
Xiaotong Xu ◽  
Yun Zhang ◽  
Min Zhu ◽  
...  

Scheme of proposed thermal cross-linking mechanism.


Sign in / Sign up

Export Citation Format

Share Document