rice husks
Recently Published Documents


TOTAL DOCUMENTS

671
(FIVE YEARS 271)

H-INDEX

54
(FIVE YEARS 8)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 531
Author(s):  
Samar Beaino ◽  
Peter El Hage ◽  
Rodolphe Sonnier ◽  
Sylvain Seif ◽  
Roland El Hage

This study highlights the synthesis of a new thermal insulating geopolymer based on the alkaline activation of fly ashes. A porous geopolymer material can be prepared without the addition of a foaming agent, using high ratio solution/ashes (activating solutions used are water, sodium or potassium hydroxide). In order to increase the porosity of the material and to make it more ecological, rice husks are incorporated into the formulation. The geopolymer materials were prepared at room temperature and dried at moderate temperature (105 °C) by a simple procedure. The microstructural characteristics of these new porous geopolymers were assessed by optical microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and X-ray fluorescence (XRF). Infrared spectroscopy (FTIR) was used to confirm the geopolymerisation. The effect of the ratio solution/ashes and the percentage of the rice husk addition on thermal and mechanical analysis was evaluated. An insulating material for a solution/ashes ratio of 0.9 and a rice husk content of 15% having a λ value of 0.087 W/(m·K), a porosity of 61.4% and an Rc value of 0.1 MPa was successfully prepared.


2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Jimmy Castillo ◽  
Michelina Arcuri ◽  
Vicmary Vargas ◽  
Vincent Piscitelli

2022 ◽  
Vol 1217 (1) ◽  
pp. 012009
Author(s):  
G J H Melvin ◽  
H M Ling ◽  
W M J Karen

Abstract Feasibility study was conducted in exploring the fabrication and characterization of resin-based functionally graded material (FGM) incorporated with carbonized waste rice husk. The waste rice husks were converted into carbon materials through heat treatment under the presence of inert gas at 500°C for 2 hours. Then, they were incorporated into resin to form FGM by centrifugal method to achieve desired gradation. Sample B3 with 5 wt.% of carbonized rice husk (CRH) incorporated into polyester resin (including hardener and ethanol) was centrifugated at 4000 rpm for 30 minutes to form FGM. The fabricated samples were cut into three parts, namely upper, middle, and bottom layer to further characterize the properties at various gradation levels. The density of sample B3 increased gradually, 4.10%, 6.54%, and 6.93% when compared to bulk resin, from upper to bottom layer, respectively. The hardness of sample B3 increased gradually, 27.38%, 42.57%, and 47.08% in contrast to bulk resin, from upper to bottom layer, respectively. FGM proposed in this study can be further manipulated based on the centrifugal force and time, ratio of solvents/hardener, and weight percentage of CRH that indicate they can be exploited for specific of numerous appropriate applications.


2021 ◽  
Vol 6 (2) ◽  
pp. 145-153
Author(s):  
Irwansyah ◽  
Balkhaya ◽  
Nuzuli Fitriadi ◽  
Herdi Susanto

The process of freezing fish always requires a cooler as a temporary storage place for fish. The ability of the storage to maintain cold temperatures is a serious problem to be considered so that the freshness of the fish can be maintained. Therefore, an appropriate technology is required to support the cold chain system so that fish quality can be maintained. The purpose of this study was to test the thermal conductivity of composite materials for fish storage insulation from a mixture of rice husks and polyurethane so that the price of the box can be reduced but still maintain the quality of the fish. The composition of the composite material was made with a volume ratio of 1:0.5, 1:1, 1:1.5, and 1:2. The thermal conductivity test of the material uses the ASTM E1225-99 standard. All test results were compared with 100% polyurethane material. The results of testing the thermal conductivity of 100% polyurethane material obtained 0.023 W/m.C. From all the test results, the material that is most likely to be applied to fish cooler box insulation is a 1:1 composition having a thermal conductivity value of 0.067W/m.C. Materials with this composition do not affect the expansion of the polyol and isocyanate reactions. This composition is the most economical to be used as insulation for fish storage boxes which can save the use of polyurethane by 50%.


2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Fonny Rianawati ◽  
Zainal Abidin ◽  
Muhammad Naparin

This study aims to conduct a study of the quality value of briquettes made from mixing straw and rice husks which include a flame test and combustion rate which is expected to be used to educate people around the forest by providing innovation and technology regarding the use of post-harvest waste. The results showed that the value of the quality of briquettes made from variations in the mixing of straw and rice husks including the flame test of the combustion rate obtained results, for treatment A (100% straw) of 0.68 gr/minute, treatment B (100% husk) of 0 ,57 gr/minute, treatment C (Husk 75% + Straw 25%) was 0.40 gr/minute, treatment D (Husk 25% + Straw 75%) was 0.46 r/minute and treatment E (Husk 50% + Straw 50%) of 0.43 gr/minute. The value of the flame to boiling time for treatment A = 38.62 minutes, treatment B = 31.05, treatment C = 23.22 minutes, treatment D = 36.05 and treatment E = 27.95 minutes. Density values of all treatments, and the water content for treatment B and treatment C can meet SII. While other parameters: ash content, volatile matter, bound carbon and calorific value still cannot meet the standards, so it is recommended to carry out further research with other variations of treatment, in order to obtain briquettes with quality that can meet the standards.


2021 ◽  
Vol 33 (1) ◽  
pp. 1-13
Author(s):  
Paris Ziarati ◽  
Luis Cruz Rodriguez ◽  
Bernhard Hochwimmer ◽  
Viola Vambol ◽  
Sergij Vambol

Due to the low dietary value of crops, Zn-deficient soils and insufficient intake of other minerals, soil fortification is often necessary. Fortification is defined as the addition of one or more crucial nutrients to a food to reduce poverty in a population or specific population groups. Currently available technologies for rice fortification with vitamins and minerals are high-energy and time-consuming methods. Therefore, mineral enrichment of crops has received much attention from scientists. The originality of the current study consists in determining the optimal use of hard hazelnut shells, orange peel and rice husks for enrichment of paddy soil and simultaneous immobilization of heavy metals. The combination of the identified wastes, namely hazelnut shells, orange peel and rice husks, showed good potential for immobilization/elimination or reduction of heavy metals to less than permissible limits. Therefore, the use of this combination could be an effective strategy to both introduce new micronutrients into rice grain and remove heavy metals.


Author(s):  
Kunal Kulkarni ◽  
Utkarsh Chadha ◽  
Shreya Yadav ◽  
D M Tarun ◽  
Thenmukilan K G ◽  
...  

Abstract Bio-derived activated porous carbon is readily used because it exhibits high surface area, excellent electrical conductivity, high stability, environment-friendly nature, and easy availability. All of these properties make it a unique and a perfect applicant for energy storage devices. Biowastes such as corncobs, walnut shells, human hair, jute, oil seeds, and bamboo are utilized as precursors in manufacturing porous carbon. The use of bio materials is preferred because of their abundance and biodegradable nature. The production of porous carbon was carried out through pyrolysis with the help of acid, primarily KOH, as the active substance. The ambient temperature for conducting pyrolysis is 400-800oC. Pyrolysis can be either fast or slow, with fast pyrolysis being helpful in most experiments. Food wastes like peels and shells are among the most significant biowaste sources alongside farm waste like rice husks, coconut shells, etc., which are not just waste and can be utilized for sustainable living. The porous carbon is formed from food waste from toxicity reducer in wastewater to for a supercapacitor or a bio anode in a microbial fuel cell. It is oneway sustainable development and is now highly economical. Moreover, in scientific aspects, their validity in a field and lowered expenses in some cases, the benefits of their usage may vary. This paper aims to extensively review all of the research conducted for Bio-waste utilization and its conversion to porous carbon for further use in super capacitance applications


2021 ◽  
Vol 2129 (1) ◽  
pp. 012040
Author(s):  
Nur Hazlinda Jakfar ◽  
Khor Shing Fhan ◽  
Banjuraizah Johar ◽  
Nur Maizatul Shima Adzali ◽  
Siti Nur Hazwani Mohd. Yunus ◽  
...  

Abstract This study focuses on the synthesis of synthetic calcium monosilicate ceramic from chicken eggshells and rice husks waste through the mechanochemical route that relatively straightforward without adding any binders. Synthetic calcium monosilicate was mixed using a 1:1 ratio of calcined eggshell and rice husk ash, which both materials known as rich in calcium oxide and silica sources, respectively. The mixed powder was pressed using uniaxial pressing before fired at 1100°C, 1150°C, 1200°C, 1250°C, and 1300°C for 120 minutes with a heating rate of 5°C/min. The XRD spectrum from 1100°C to 1200°C mainly consists of pseudowollastonite (ICSD: 98-005-2576), wollastonite and silicon dioxide phases. However, as the sintering temperature increases, the wollastonite phases was completely transformed into pseudowollastonite, leaving some unreacted silica.


Sign in / Sign up

Export Citation Format

Share Document