Enhancement of flame retardancy and mechanical properties of polyamide 6 by incorporating melamine cyanurate combined with attapulgite

2018 ◽  
Vol 137 (2) ◽  
pp. 47298 ◽  
Author(s):  
Wei Hou ◽  
Yifan Fu ◽  
Cen Zeng ◽  
Na Liu ◽  
Cuiyu Yin
2013 ◽  
Vol 712-715 ◽  
pp. 195-198
Author(s):  
Dong Mei Bao ◽  
Ji Ping Liu ◽  
Xiang Yang Hao

The organically modified montmorrillonite (OMMT)/phosphorus polymeic flame retardant (PFR)/polyamide 6(PA6) nanocomposites were prepared via melt intercalation on a twin-screw extruder. The structure formed in nanocomposite system was investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). Properties such as flame retardancy, notched impact strength, tensile strength, elongation at break and flexural modulus were studied by limited oxygen index (LOI) approach, UL94, and mechanical property test. The results of the studies indicated that flame retardancy and mechanical properties of PA6 nanocomposites were all reinforced due to addition of OMMT and PFR.


2003 ◽  
Vol 11 (8) ◽  
pp. 691-702 ◽  
Author(s):  
X. Almeras ◽  
M. Le Bras ◽  
S. Bourbigot ◽  
P. Hornsby ◽  
G. Marosi ◽  
...  

One way to improve the fire performance of polymers is by the development of intumescent systems. The addition of ammonium polyphosphate/polyamide-6 is known to provide flame retardancy in many polymers via an intumescent process. The development of appropriate formulations is limited by their mechanical properties. This study shows that polypropylene based intumescent blends are efficient fire retardant systems and that acceptable mechanical properties can be obtained. It is also shown that adding talc improves the mechanical properties of intumescent polypropylene formulations without decreasing their fire retardancy.


2014 ◽  
Vol 789 ◽  
pp. 169-173 ◽  
Author(s):  
Li Li Li ◽  
Zhi Hao Wu ◽  
Shuai Shuai Jiang ◽  
Tian Ze Wu ◽  
Shou Yang Lu ◽  
...  

Different dimensional siliciferous particles including silica (0D), halloysite nanotubes (HNTs,1D) and montmorillonite (MMT,2D) were melt blending with certain amount of melamine cyanurate and polyamide 6(PA6) by a twin-screw extruder. Characterization of the PA6 composites has been investigated using scan electron microscopy (SEM), thermal gravimetric analyzer (TGA), universal testing machine and limiting oxygen index instrument. SEM images indicate that the nanoparticles were uniformly dispersed in the PA6 but there was some aggregation of MCA in the composites. The incorporation of silica exerted a negative effect on the flame retardancy of PA6/MCA composite, whereas adding HNTs and MMT lead to the improvements of LOI value of 30.4 and 30.9 respectively. TGA results show that PA6/MCA/silica, PA6/MCA/HNTs and PA6/MCA/OMMT exhibit two degradation stages. Higher Tmax1 and Tmax2 appeared comparing with PA6/MCA. Char residue of PA6/MCA/OMMT at 600°C were elevated most. HNTs and OMMT can increase the tensile strength and elongation of PA6/MCA by universal testing machine results, even higher than pure PA6, showing enhanced effects of these 1D and 2D fillers. These could enhance strength of the char and finally increase the flame retardancy of PA6.


Sign in / Sign up

Export Citation Format

Share Document