scholarly journals Myocardin Marks the Earliest Cardiac Gene Expression and Plays an Important Role in Heart Development

2008 ◽  
Vol 291 (10) ◽  
pp. 1200-1211 ◽  
Author(s):  
Jian-Fu Chen ◽  
Shusheng Wang ◽  
Qiulian Wu ◽  
Dongsun Cao ◽  
Thiha Nguyen ◽  
...  
Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5679-5688 ◽  
Author(s):  
K. Gajewski ◽  
N. Fossett ◽  
J.D. Molkentin ◽  
R.A. Schulz

The regulation of cardiac gene expression by GATA zinc finger transcription factors is well documented in vertebrates. However, genetic studies in mice have failed to demonstrate a function for these proteins in cardiomyocyte specification. In Drosophila, the existence of a cardiogenic GATA factor has been implicated through the analysis of a cardial cell enhancer of the muscle differentiation gene D-mef2. We show that the GATA gene pannier is expressed in the dorsal mesoderm and required for cardial cell formation while repressing a pericardial cell fate. Ectopic expression of Pannier results in cardial cell overproduction, while co-expression of Pannier and the homeodomain protein Tinman synergistically activate cardiac gene expression and induce cardial cells. The related GATA4 protein of mice likewise functions as a cardiogenic factor in Drosophila, demonstrating an evolutionarily conserved function between Pannier and GATA4 in heart development.


Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 225-235 ◽  
Author(s):  
F. Reifers ◽  
E.C. Walsh ◽  
S. Leger ◽  
D.Y. Stainier ◽  
M. Brand

Vertebrate heart development is initiated from bilateral lateral plate mesoderm that expresses the Nkx2.5 and GATA4 transcription factors, but the extracellular signals specifying heart precursor gene expression are not known. We describe here that the secreted signaling factor Fgf8 is expressed in and required for development of the zebrafish heart precursors, particularly during initiation of cardiac gene expression. fgf8 is mutated in acerebellar (ace) mutants, and homozygous mutant embryos do not establish normal circulation, although vessel formation is only mildly affected. In contrast, heart development, in particular of the ventricle, is severely abnormal in acerebellar mutants. Several findings argue that Fgf8 has a direct function in development of cardiac precursor cells: fgf8 is expressed in cardiac precursors and later in the heart ventricle. Fgf8 is required for the earliest stages of nkx2.5 and gata4, but not gata6, expression in cardiac precursors. Cardiac gene expression is restored in acerebellar mutant embryos by injecting fgf8 RNA, or by implanting a Fgf8-coated bead into the heart primordium. Pharmacological inhibition of Fgf signalling during formation of the heart primordium phenocopies the acerebellar heart phenotype, confirming that Fgf signaling is required independently of earlier functions during gastrulation. These findings show that fgf8/acerebellar is required for induction and patterning of myocardial precursors.


1998 ◽  
Vol 62 (6) ◽  
pp. 436-442 ◽  
Author(s):  
Naruhito Shimizu ◽  
Minoru Yoshiyama ◽  
Kazuhide Takeuchi ◽  
Akihisa Hanatani ◽  
Shokei Kim ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Archana V Boopathy ◽  
Pao L Che ◽  
Yoshie Narui ◽  
Khalid Salaita ◽  
Michael E Davis

Rationale: Cardiac progenitor cells (CPCs) are multipotent, self-renewing cells that can regenerate the myocardium and improve cardiac function in animal models of myocardial infarction (MI). However, limited survival of stem/progenitor cells inhibits cardiac regeneration. Force dependent Notch activation promotes cardiac development and cardiac gene expression in many adult stem cells. As dysregulation of Notch signaling leads to embryonic lethal cardiovascular defects, activating this critical pathway during cell transplantation could improve efficacy of stem cell therapy. Objective: Investigate i) whether self-assembling peptide scaffolds can be used to activate Notch1 signaling in CPCs to promote cardiogenic differentiation and ii) the effect of scaffold stiffness on Notch1 activation and differentiation. Methods: Rat CPCs (c-kit + ) were cultured for 48h in 3D self-assembling scaffolds of varying stiffness (1% low, 2% high): empty scaffolds (RADA), scaffolds modified with peptide mimicking Notch1 ligand, Jagged1 (RJAG), or scaffolds modified with a scrambled peptide (RSCR) and cardiogenic gene expression measured by qRT-PCR. CHO cells expressing Notch1 responsive YFP were also cultured in the above scaffolds for 48h and YFP expression was determined. Results are mean ± SEM with p<0.05 considered significant by one or two-way ANOVA with appropriate post test. Results: In the Notch1 reporter cells, Notch1 activation increased significantly in presence of RJAG (p<0.01) and on increasing scaffold stiffness (p<0.01,n=6) indicating scaffold stiffness-dependent Notch1 activation. Culture of CPCs in RJAG containing 1% scaffolds (low stiffness) significantly increased early endothelial and smooth muscle but not cardiac gene expression while in 2% scaffolds (high stiffness) significantly increased only cardiac and not endothelial or smooth muscle gene expression (p<0.05, n≥4). Conclusions: Taken together, these data show that i) Notch1 activation in 3D is dependent on ligand density and scaffold stiffness and ii) stiffness dependent Notch1 activation differentially regulates cardiogenic gene expression in CPCs. Therefore, delivery of CPCs in JAG containing scaffolds could be used to improve cardiac function following MI.


2007 ◽  
Vol 309 (2) ◽  
pp. 386
Author(s):  
Allesandro D. Mori ◽  
Yonghong Zhu ◽  
Ilyas Vahora ◽  
Brian Nieman ◽  
Kazuko Koshiba-Takeuchi ◽  
...  

1995 ◽  
Vol 752 (1 Cardiac Growt) ◽  
pp. 370-386 ◽  
Author(s):  
J. L. SAMUEL ◽  
I. DUBUS ◽  
F. FARHADIAN ◽  
F. MAROTTE ◽  
P. OLIVIERO ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174242 ◽  
Author(s):  
Tareq Al-Maqtari ◽  
Kyung U. Hong ◽  
Bathri N. Vajravelu ◽  
Afsoon Moktar ◽  
Pengxiao Cao ◽  
...  

2002 ◽  
Vol 66 (1) ◽  
pp. 93-93 ◽  
Author(s):  
Masanori Asakura ◽  
Masafumi Kitakaze ◽  
Yasuhiko Sakata ◽  
Hiroshi Asanuma ◽  
Shoji Sanada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document