scholarly journals miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development

2017 ◽  
Vol 114 (7) ◽  
pp. 1495-1510 ◽  
Author(s):  
Simon Fischer ◽  
Kim F. Marquart ◽  
Lisa A. Pieper ◽  
Juergen Fieder ◽  
Martin Gamer ◽  
...  
2021 ◽  
Vol 22 (5) ◽  
pp. 2407
Author(s):  
Sung Wook Shin ◽  
Dongwoo Kim ◽  
Jae Seong Lee

Chinese hamster ovary (CHO) cells are the most valuable expression host for the commercial production of biotherapeutics. Recent trends in recombinant CHO cell-line development have focused on the site-specific integration of transgenes encoding recombinant proteins over random integration. However, the low efficiency of homology-directed repair upon transfection of Cas9, single-guide RNA (sgRNA), and the donor template has limited its feasibility. Previously, we demonstrated that a double-cut donor (DCD) system enables highly efficient CRISPR/Cas9-mediated targeted integration (TI) in CHO cells. Here, we describe several CRISPR/Cas9 vector systems based on DCD templates using a promoter trap-based TI monitoring cell line. Among them, a multi-component (MC) system consisting of an sgRNA/DCD vector and Cas9 expression vector showed an approximate 1.5-fold increase in knock-in (KI) efficiency compared to the previous DCD system, when a systematically optimized relative ratio of sgRNA/DCD and Cas9 vector was applied. Our optimization efforts revealed that concurrently increasing sgRNA and DCD components relative to Cas9 correlated positively with KI efficiency at a single KI site. Furthermore, we explored component bottlenecks, such as effects of sgRNA components and applicability of the MC system on simultaneous double KI. Taken together, we improved the DCD vector design by tailoring plasmid constructs and relative component ratios, and this system can be widely used in the TI strategy of transgenes, particularly in CHO cell line development and engineering.


2021 ◽  
Author(s):  
Bingen G. Monasterio ◽  
Noemi Jiménez-Rojo ◽  
Aritz B. García-Arribas ◽  
Howard Riezman ◽  
Félix M. Goñi ◽  
...  

Abstract Two main strategies for establishing the cellular effects of a given enzyme activity suppression are (a) the use of a stably mutated cell line that lacks a functional gene, or (b) treating the wild type with an inhibitory compound that affects the same gene-product protein. In this work, myriocin was used to block the serine palmitoyltransferase (SPT) enzyme of CHO cells and the subsequent biophysical changes in membranes were measured and compared with results obtained with a genetically modified CHO cell line containing a defective SPT (the LY-B cell line). Similar effects were observed with both approaches: sphingomyelin values were markedly decreased in myriocin-treated CHO cells and, in consequence, their membrane molecular order (measured as laurdan general polarization) and mechanical resistance (AFM-measured breakthrough force values) happened to be lower than in the native, non-treated cells. Cells treated with myriocin reacted homeostatically to maintain membrane order, synthesizing more fully saturated and less polyunsaturated glycerophospholipids than the non-treated ones, although they achieved it only partially, their plasma membranes remaining more fluid and less penetrable than those from the control cells.


2020 ◽  
Author(s):  
Tobias Groß ◽  
Csaba Jeney ◽  
Darius Halm ◽  
Günter Finkenzeller ◽  
G. Björn Stark ◽  
...  

AbstractThe homogeneity of the genetically modified single-cells is a necessity for many applications such as cell line development, gene therapy, and tissue engineering and in particular for regenerative medical applications. The lack of tools to effectively isolate and characterize CRISPR/Cas9 engineered cells is considered as a significant bottleneck in these applications. Especially the incompatibility of protein detection technologies to confirm protein expression changes without a preconditional large-scale clonal expansion, creates a gridlock in many applications. To ameliorate the characterization of engineered cells, we propose an improved workflow, including single-cell printing/isolation technology based on fluorescent properties with high yield, a genomic edit screen (surveyor assay), mRNA rtPCR assessing altered gene expression and a versatile protein detection tool called emulsion-coupling to deliver a high-content, unified single-cell workflow. The workflow was exemplified by engineering and functionally validating RANKL knockout immortalized mesenchymal stem cells showing altered bone formation capacity of these cells. The resulting workflow is economical, without the requirement of large-scale clonal expansions of the cells with overall cloning efficiency above 30% of CRISPR/Cas9 edited cells. Nevertheless, as the single-cell clones are comprehensively characterized at an early, highly parallel phase of the development of cells including DNA, RNA, and protein levels, the workflow delivers a higher number of successfully edited cells for further characterization, lowering the chance of late failures in the development process.Author summaryI completed my undergraduate degree in biochemistry at the University of Ulm and finished my master's degree in pharmaceutical biotechnology at the University of Ulm and University of applied science of Biberach with a focus on biotechnology, toxicology and molecular biology. For my master thesis, I went to the University of Freiburg to the department of microsystems engineering, where I developed a novel workflow for cell line development. I stayed at the institute for my doctorate, but changed my scientific focus to the development of the emulsion coupling technology, which is a powerful tool for the quantitative and highly parallel measurement of protein and protein interactions. I am generally interested in being involved in the development of innovative molecular biological methods that can be used to gain new insights about biological issues. I am particularly curious to unravel the complex and often poorly understood protein interaction pathways that are the cornerstone of understanding cellular functionality and are a fundamental necessity to describe life mechanistically.


2016 ◽  
Vol 505 ◽  
pp. 73-75 ◽  
Author(s):  
Ildana Valisheva ◽  
Reed J. Harris ◽  
Judith Zhu-Shimoni

2013 ◽  
Vol 7 (S6) ◽  
Author(s):  
Pierre-Alain Girod ◽  
Valérie Le Fourn ◽  
David Calabrese ◽  
Alexandre Regamey ◽  
Deborah Ley ◽  
...  

Author(s):  
João Vidigal ◽  
Fabiana Fernandes ◽  
Ana S. Coroadinha ◽  
Ana P. Teixeira ◽  
Paula M. Alves

Sign in / Sign up

Export Citation Format

Share Document