cho cell
Recently Published Documents


TOTAL DOCUMENTS

988
(FIVE YEARS 178)

H-INDEX

65
(FIVE YEARS 6)

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Fatemeh Safari ◽  
Bahman Akbari

Abstract Background Chinese hamster ovary cell line has been used routinely as a bioproduction factory of numerous biopharmaceuticals. So far, various engineering strategies have been recruited to improve the production efficiency of this cell line such as apoptosis engineering. Previously, it is reported that the caspase-7 deficiency in CHO cells reduces the cell proliferation rate. But the effect of this reduction on the CHO cell productivity remained unclear. Hence, in the study at hand the effect of caspase-7 deficiency was assessed on the cell growth, viability and protein expression. In addition, the enzymatic activity of caspase-3 was investigated in the absence of caspase-7. Results Findings showed that in the absence of caspase-7, both cell growth and cell viability were decreased. Cell cycle analysis illustrated that the CHO knockout (CHO-KO) cells experienced a cell cycle arrest in G2/M phase. This cell cycle arrest resulted in a 1.7-fold increase in the expression of luciferase in CHO-KO cells compared to parenteral cells. Furthermore, in the apoptotic situation the enzymatic activity of caspase-3 in CHO-KO cells was approximately 3 times more than CHO-K1 cells. Conclusions These findings represented that; however, caspase-7 deficiency reduces the cell proliferation rate but the resulted cell cycle arrest leads to the enhancement of recombinant protein expression. Moreover, increasing in the caspase-3 enzymatic activity compensates the absence of caspase-7 in the caspase cascade of apoptosis.


Author(s):  
Ankita Singh ◽  
Yuzhou Fan ◽  
Selgin Cakal ◽  
Thomas Amann ◽  
Anders Hansen ◽  
...  

CHO cell lines are a workhorse for the production of pharmaceutical proteins, but show some limitations in the variability and stability of N-glycosylation profiles. One promising approach to addressing this at the required systems-level is miRNA, which can regulate a large number of genes and have predictable targets. Herein, we first identified de novo 656 potential miRNAs in the CHO genome based on a combination of literature, database searching, and miRNA sequencing. We further sequenced mRNA from the same cultures, and used a combination of mRNA-miRNA correlation analysis, target prediction and literature searches to find miRNAs potentially targeting N-glycosylation. Our ten best miRNA candidates were subjected to miRNA overexpression, knockdown, or knock-out in CHO cell lines. Out of the ten candidates, four (miR-128, miR-34c, miR-30b, and miR-449a) showed positive effects on N-glycosylation and could be applied directly for CHO cell engineering. The fact that 40% of the screened targets had a desired effect, and the prediction of 656 miRNAs illustrates the massive potential of miRNA engineering in CHO.


Author(s):  
Ana P. Teixeira ◽  
Pascal Stücheli ◽  
Simon Ausländer ◽  
David Ausländer ◽  
Pascal Schönenberger ◽  
...  

Author(s):  
Duygu AYYILDIZ TAMİS ◽  
Berna USTUNER ◽  
Secil DAYANKAC UNVER ◽  
Tunç TURGUT ◽  
Deniz BAYCIN

Lab on a Chip ◽  
2022 ◽  
Author(s):  
Hyungkook Jeon ◽  
Taehong Kwon ◽  
Junghyo Yoon ◽  
Jongyoon Han

Inertial microfluidics has enabled many impactful high throughput applications. However, devices fabricated in soft elastomer (i.e., polydimethylsiloxane (PDMS)) suffer reliability issues due to significant deformation generated by the high pressure...


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 823
Author(s):  
Grace Yao ◽  
Kathryn Aron ◽  
Michael Borys ◽  
Zhengjian Li ◽  
Girish Pendse ◽  
...  

Much progress has been made in improving the viable cell density of bioreactor cultures in monoclonal antibody production from Chinese hamster ovary (CHO) cells; however, specific productivity (qP) has not been increased to the same degree. In this work, we analyzed a library of 24 antibody-expressing CHO cell clones to identify metabolites that positively associate with qP and could be used for clone selection or medium supplementation. An initial library of 12 clones, each producing one of two antibodies, was analyzed using untargeted LC-MS experiments. Metabolic model-based annotation followed by correlation analysis detected 73 metabolites that significantly correlated with growth, qP, or both. Of these, metabolites in the alanine, aspartate, and glutamate metabolism pathway, and the TCA cycle showed the strongest association with qP. To evaluate whether these metabolites could be used as indicators to identify clones with potential for high productivity, we performed targeted LC-MS experiments on a second library of 12 clones expressing a third antibody. These experiments found that aspartate and cystine were positively correlated with qP, confirming the results from untargeted analysis. To investigate whether qP correlated metabolites reflected endogenous metabolic activity beneficial for productivity, several of these metabolites were tested as medium additives during cell culture. Medium supplementation with citrate improved qP by up to 490% and more than doubled the titer. Together, these studies demonstrate the potential for using metabolomics to discover novel metabolite additives that yield higher volumetric productivity in biologics production processes.


Sign in / Sign up

Export Citation Format

Share Document