sequence variant
Recently Published Documents


TOTAL DOCUMENTS

542
(FIVE YEARS 210)

H-INDEX

43
(FIVE YEARS 8)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Renmao Tian ◽  
Behzad Imanian

Abstract Background Amplicon sequencing of marker genes such as 16S rDNA have been widely used to survey and characterize microbial community. However, the complex data analyses have required many interfering manual steps often leading to inconsistencies in results. Results Here, we have developed a pipeline, amplicon sequence analysis pipeline 2 (ASAP 2), to automate and glide through the processes without the usual manual inspections and user’s interference, for instance, in the detection of barcode orientation, selection of high-quality region of reads, and determination of resampling depth and many more. The pipeline integrates all the analytical processes such as importing data, demultiplexing, summarizing read profiles, trimming quality, denoising, removing chimeric sequences and making the feature table among others. The pipeline accepts multiple file formats as input including multiplexed or demultiplexed, paired-end or single-end, barcode inside or outside and raw or intermediate data (e.g. feature table). The outputs include taxonomic classification, alpha/beta diversity, community composition, ordination analysis and statistical tests. ASAP 2 supports merging multiple sequencing runs which helps integrate and compare data from different sources (public databases and collaborators). Conclusions Our pipeline minimizes hands-on interference and runs amplicon sequence variant (ASV)-based amplicon sequencing analysis automatically and consistently. Our web server assists researchers that have no access to high performance computer (HPC) or have limited bioinformatics skills. The pipeline and web server can be accessed at https://github.com/tianrenmaogithub/asap2 and https://hts.iit.edu/asap2, respectively.


2021 ◽  
Vol 19 (4) ◽  
pp. e44
Author(s):  
Rajat Hegde ◽  
Smita Hegde ◽  
Suyamindra S. Kulkarni ◽  
Aditya Pandurangi ◽  
Pramod B. Gai ◽  
...  

Autism is a complex neurodevelopmental disorder, the prevalence of which has increased drastically in India in recent years. Neuroligin is a type I transmembrane protein that plays a crucial role in synaptogenesis. Alterations in synaptic genes are most commonly implicated in autism and other cognitive disorders. The present study investigated the neuroligin 3 gene in the Indian autistic population by sequencing and in silico pathogenicity prediction of molecular changes. In total, 108 clinically described individuals with autism were included from the North Karnataka region of India, along with 150 age-, sex-, and ethnicity-matched healthy controls. Genomic DNA was extracted from peripheral blood, and exonic regions were sequenced. The functional and structural effects of variants of the neuroligin 3 protein were predicted. One coding sequence variant (a missense variant) and four non-coding variants (two 5'-untranslated region [UTR] variants and two 3'-UTR variants) were recorded. The novel missense variant was found in 25% of the autistic population. The C/C genotype of c.551T>C was significantly more common in autistic children than in controls (p = 0.001), and a significantly increased risk of autism (24.7-fold) was associated with this genotype (p = 0.001). The missense variant showed pathogenic effects and high evolutionary conservation over the functions of the neuroligin 3 protein. In the present study, we reported a novel missense variant, V184A, which causes abnormal neuroligin 3 and was found with high frequency in the Indian autistic population. Therefore, neuroligin is a candidate gene for future molecular investigations and functional analysis in the Indian autistic population.


2021 ◽  
Vol 8 ◽  
Author(s):  
Alfabetian Harjuno Condro Haditomo ◽  
Masanori Yonezawa ◽  
Juanwen Yu ◽  
Sayaka Mino ◽  
Yuichi Sakai ◽  
...  

Sea urchin is an indicator of coastal environmental changes in the global warming era, and is also a model organism in developmental biology and evolution. Due to the depletion of wild resources, new aquaculture techniques for improving stocks have been well studied. The gut microbiome shapes various aspects of a host’s physiology. However, these microbiome structures and functions on sea urchins, particularly Mesocentrotus nudus and Strongylocentrotus intermedius which are important marine bioresources commonly found in Japan, have not been fully investigated yet. Using metagenomic approaches including meta16S and shotgun metagenome sequencings, the structures, functions, and dynamics of the gut microbiome of M. nudus and S. intermedius, related to both habitat environment and host growth, were studied. Firstly, a broad meta16S analysis revealed that at the family level, Psychromonadaceae and Flavobacteriaceae reads (38–71%) dominated in these sea urchins, which is a unique feature observed in species in Japan. Flavobacteriaceae reads were more abundant in individuals after rearing in an aquarium with circulating compared to one with running water. Campylobacteraceae and Vibrionaceae abundances increased in both kinds of laboratory-reared sea urchins in both types of experiments. 2-weeks feeding experiments of M. nudus and S. intermedius transplanted from the farm to laboratory revealed that these gut microbial structures were affected by diet rather than rearing environments and host species. Secondly, further meta16S analysis of microbial reads related to M. nudus growth revealed that at least four Amplicon Sequence Variant (ASV) affiliated to Saccharicrinis fermentans, which is known to be a nitrogen (N2) fixing bacterium, showed a significant positive correlation to the body weight and test diameter. Interestingly, gut microbiome comparisons using shotgun metagenome sequencing of individuals showing higher and lower growth rates revealed a significant abundance of “Nitrate and nitrite ammonification” genes in the higher-grown individuals under the circulating water rearing. These findings provide new insights on the structure-function relationship of sea urchin gut microbiomes beyond previously reported nitrogen fixation function in sea urchin in 1950s; we discovered a nitrate reduction function into ammonium for the growth promotion of sea urchin.


2021 ◽  
Author(s):  
Nancy Horton ◽  
Jonathan L Sanchez ◽  
Niloofar Ghadirian

Two new structures of the N-terminal domain of the main replication protein, NS1, of Human Parvovirus B19 (B19V) are presented. This domain (NS1-nuc) plays an important role in the “rolling hairpin” replication of the single-stranded B19V DNA genome, recognizing origin of replication sequences in double-stranded DNA, and cleaving (i.e. nicking) single-stranded DNA at a nearby site known as the trs. One structure of NS1-nuc is solved to 2.4 Å and shows the positions of two bound phosphate ions. A second structure shows the position of a single divalent cation in the DNA nicking active site. The three-dimensional structure of NS1-nuc is well conserved between the two forms, as well as with a previously solved structure of a sequence variant of the same domain, however shown here at significantly higher resolution. Using structures of NS1-nuc homologues bound to single- and double-stranded DNA, models for DNA recognition and nicking by B19V NS1-nuc are presented which predict residues important for DNA cleavage and for sequence specific recognition at the viral origin of replication.


2021 ◽  
Author(s):  
Marty G. Yang ◽  
Emi Ling ◽  
Christopher J. Cowley ◽  
Michael E. Greenberg ◽  
Thomas Vierbuchen

Sequence variation in enhancers, a class of cis-regulatory elements that control cell type-specific gene transcription, contributes significantly to phenotypic variation within human populations. Enhancers are short DNA sequences (~200 bp) composed of multiple binding sites (4-10 bp) for transcription factors (TFs). The transcriptional regulatory activity of an enhancer is encoded by the type, number, and distribution of TF binding sites that it contains. However, the sequence determinants of TF binding to enhancers and the relationship between TF binding and enhancer activity are complex, and thus it remains difficult to predict the effect of any given sequence variant on enhancer function. Here, we generate allele-specific maps of TF binding and enhancer activity in fibroblasts from a panel of F1 hybrid mice that have a high frequency of sequence variants. We identified thousands of enhancers that exhibit differences in TF binding and/or activity between alleles and use these data to define features of sequence variants that are most likely to impact enhancer function. Our data demonstrate a critical role for AP-1 TFs at many fibroblast enhancers, reveal a hierarchical relationship between AP-1 and TEAD TF binding at enhancers, and delineate the nature of sequence variants that contribute to AP-1 TF binding. These data represent one of the most comprehensive assessments to date of the impact of sequence variation on enhancer function in chromatin, with implications for identifying functional cis-regulatory variation in human populations.


2021 ◽  
Vol 118 (51) ◽  
pp. e2106844118
Author(s):  
Vanessa Aguiar-Pulido ◽  
Paul Wolujewicz ◽  
Alexander Martinez-Fundichely ◽  
Eran Elhaik ◽  
Gaurav Thareja ◽  
...  

Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance, and environmental influences that hamper genome-wide association studies approaches to untargeted discovery. Thus, SB genetic studies may suffer from population substructure and/or selection bias introduced by typical candidate gene searches. We report a population based, ancestry-matched whole-genome sequence analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), rare protein-coding variants were subjected to machine learning analysis to identify genes in which LGD variants occur with a different frequency in cases versus controls and so discriminate between these groups. Those genes with high discriminatory potential for SB significantly enriched pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation, and essential transcriptional regulation consistent with their having impact on the pathogenesis of human SB. Additionally, an interrogation of conserved noncoding sequences identified robust variant enrichment in regulatory regions of several transcription factors critical to embryonic development. This genome-wide perspective offers an effective approach to the interrogation of coding and noncoding sequence variant contributions to rare complex genetic disorders.


2021 ◽  
Author(s):  
Connie Jiang ◽  
Ebony Richardson ◽  
Jessica Farr ◽  
Adam P Hill ◽  
Rizwan Ullah ◽  
...  

Purpose: Modern sequencing technologies have revolutionised our detection of gene variants. In most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUS). The aim of this study is to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in the KCNH2 gene. Methods: The assay was designed according to recommendations of the ClinGen sequence variant interpretation framework. Thirty-one control variants of known clinical significance (17 pathogenic/likely pathogenic, 14 benign/likely benign) were heterozygously expressed in Flp-In HEK293 cells. Variants were analysed for effects on current density and channel gating. A panel of 44 VUS was then assessed for reclassification. Results: All 17 pathogenic variant controls had reduced current density and 13/14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying moderate or supporting evidence strength for variant classification. Inclusion of KCNH2 functional assay evidence enabled us to reclassify 6 out of 44 VUS as likely pathogenic. Conclusion: The high-throughput patch clamp assay can provide moderate strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value proposition for developing automated patch clamp assays for other ion channel genes.


2021 ◽  
Vol 4 (2) ◽  
pp. 38-47
Author(s):  
E. E. Radchenko ◽  
N. V. Alpatieva ◽  
Yu. I. Karabitsina ◽  
M. K. Ryazanova ◽  
E. B. Kuznetsova ◽  
...  

Background. The development of heterotic hybrids based on cytoplasmic male sterility (CMS) is the leading strategy in breeding sorghum (Sorghum bicolor (L.) Moench). The trait of pollen fertility restoration in forms with CMS A1 (milo), predominantly used in sorghum breeding, is determined by at least two dominant complementary genes Rf1 and Rf2, and also gene Rf5. The development of accessible molecular markers of sorghum Rf genes is highly relevant for hybrid breeding, since they can significantly accelerate the process of creating female sterile forms (A lines), sterility maintainers (B lines) and pollen fertility restorers (R lines).Material and methods. The studied material included 36 sorghum accessions from the VIR collection, which differed by the ability to restore pollen fertility in forms with A1-type CMS. The nucleotide polymorphism of 935 bp fragments of the PPR genes Sobic.002G057050, Sobic.002G054100, and Sobic.002G054200 located at the chromosome 2 was studied.Results. The fragments obtained with the use of a pair of 2459403fw and 2459403 primers were 935 bp long and included parts of three genes: Sobic.002G057050, Sobic.002G054100, Sobic.002G054200. For identifying the sequence variant Sobic.002G057050-1090 associated with the Rf2 gene, Tru9 I restrictase was chosen, which allows obtaining a 572 bp fragment unique for all the studied R lines. Such a marker was found in 10 sorghum lines from West China and Kyrgyzstan, which are widely used in breeding as fertility restorers. The fragment was found neither in three lines with sterile cytoplasm and their fertile analogues, nor in 7 accessions of kafir sorghum, which lacked functional alleles of Rf genes.Conclusions. It has been demonstrated that the marker can be used for selection and checking purity of R and B/A lines. It is also applicable for verifying hybridity of F1 seeds and analyzing hybrid populations from crosses of R lines 924-4, 928-1, 929-3, 931-1, 933-1/6, 1237-3, 1243-2, 1251, 1150-1, F10BC2 with A lines Nizkorosloe 81s, А-83 and А-10598. It may be suggested that the ability to restore pollen fertility in R lines, which lack the marker CAPS- 572, is determined by another Rf gene. The studied 935 bp fragment of Sobic.002G057050 harbours 22 SNP, therefore the development of CAPS-markers for their identification and differentiation can be promising.


2021 ◽  
Author(s):  
Parul Sharma ◽  
Marcela A. Johnson ◽  
Reza Mazloom ◽  
Caitilyn Allen ◽  
Lenwood S. Heath ◽  
...  

AbstractRalstonia solanacearum species complex (RSSC) strains are bacteria that colonize plant xylem and cause vascular wilt diseases. However, individual strains vary in host range, optimal disease temperatures, and physiological traits. To increase our understanding of the evolution, diversity, and biology of the RSSC, we performed a meta-analysis of 100 representative RSSC genomes. These 100 RSSC genomes contain 4,940 genes on average, and a pangenome analysis found that there are 3,262 genes in the core genome (∼60% of the mean RSSC genome) with 13,128 genes in the extensive flexible genome. Although a core genome phylogenetic tree and a genome similarity matrix aligned with the previously named species (R. solanacearum, R. pseudosolanacearum, R. syzygii) and phylotypes (I-IV), these analyses also highlighted an unrecognized sub-clade of phylotype II. Additionally, we identified differences between phylotypes with respect to gene content and recombination rate, and we delineated population clusters based on the extent of horizontal gene transfer. Multiple analyses indicate that phylotype II is the most diverse phylotype, and it may thus represent the ancestral group of the RSSC. Additionally, we also used our genome-based framework to test whether the RSSC sequence variant (sequevar) taxonomy is a robust method to define within-species relationships of strains. The sequevar taxonomy is based on alignments of a single conserved gene (egl). Although sequevars in phylotype II describe monophyletic groups, the sequevar system breaks down in the highly recombinogenic phylotype I, which highlights the need for an improved cost-effective method for genotyping strains in phylotype I. Finally, we enabled quick and precise genome-based identification of newly sequenced Ralstonia strains by assigning Life Identification Numbers (LINs) to the 100 strains and by circumscribing the RSSC and its sub-groups in the LINbase Web service.IMPACT STATEMENTThe Ralstonia solanacearum species complex (RSSC) includes dozens of economically important pathogens of many cultivated and wild plants. The extensive genetic and phenotypic diversity that exists within the RSSC has made it challenging to subdivide this group into meaningful subgroups with relevance to plant disease control and plant biosecurity. This study provides a solid genome-based framework for improved classification and identification of the RSSC by analyzing one hundred representative RSSC genome sequences with a suite of comparative evolutionary genomic tools. The results also lay the foundation for additional in-depth studies to gain further insights into evolution and biology of this heterogeneous complex of destructive plant pathogens.DATA SUMMARYThe authors confirm that all raw data and code and protocols have been provided within the manuscript. All publicly available sequencing data used for analysis have been supplemented with accession numbers to access the data. The assembled genome of strain 19-3PR_UW348 was submitted to NCBI under Bioproject PRJNA775652 Biosample SAMN22612291. This Whole Genome Shotgun project has been deposited at GenBank under the accession JAJMMU000000000. The version described in this paper is version JAJMMU010000000.


Neurogenetics ◽  
2021 ◽  
Author(s):  
Ivana Dzinovic ◽  
Tereza Serranová ◽  
Clement Prouteau ◽  
Estelle Colin ◽  
Alban Ziegler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document