scholarly journals Erratum for “Microengineered 3D cell‐laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering” (Vol. 114, Issue 1, pp. 217–231)

Author(s):  
Amir Mellati ◽  
Chia‐Ming Fan ◽  
Ali Tamayol ◽  
Nasim Annabi ◽  
Sheng Dai ◽  
...  
2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Yanyan Cao ◽  
Peng Cheng ◽  
Shengbo Sang ◽  
Chuan Xiang ◽  
Yang An ◽  
...  

Abstract Cartilage has limited self-repair ability due to its avascular, alymphatic and aneural features. The combination of three-dimensional (3D) printing and tissue engineering provides an up-and-coming approach to address this issue. Here, we designed and fabricated a tri-layered (superficial layer (SL), middle layer (ML) and deep layer (DL)) stratified scaffold, inspired by the architecture of collagen fibers in native cartilage tissue. The scaffold was composed of 3D printed depth-dependent gradient poly(ε-caprolactone) (PCL) impregnated with methacrylated alginate (ALMA), and its morphological analysis and mechanical properties were tested. To prove the feasibility of the composite scaffolds for cartilage regeneration, the viability, proliferation, collagen deposition and chondrogenic differentiation of embedded rat bone marrow mesenchymal stem cells (BMSCs) in the scaffolds were assessed by Live/dead assay, CCK-8, DNA content, cell morphology, immunofluorescence and real-time reverse transcription polymerase chain reaction. BMSCs-loaded gradient PCL/ALMA scaffolds showed excellent cell survival, cell proliferation, cell morphology, collagen II deposition and hopeful chondrogenic differentiation compared with three individual-layer scaffolds. Hence, our study demonstrates the potential use of the gradient PCL/ALMA construct for enhanced cartilage tissue engineering.


Author(s):  
Anamarija Rogina ◽  
Maja Pušić ◽  
Lucija Štefan ◽  
Alan Ivković ◽  
Inga Urlić ◽  
...  

Biomaterials ◽  
2011 ◽  
Vol 32 (25) ◽  
pp. 5773-5781 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Quynhhoa T. Nguyen ◽  
Albert C. Chen ◽  
David L. Kaplan ◽  
Robert L. Sah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document