tissue constructs
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 146)

H-INDEX

51
(FIVE YEARS 8)

2022 ◽  
Vol 32 (1) ◽  
pp. 2270001
Author(s):  
Seokyoung Bang ◽  
Dongha Tahk ◽  
Young Hwan Choi ◽  
Somin Lee ◽  
Jungeun Lim ◽  
...  

Author(s):  
Natalia Vapniarsky ◽  
Lilia Moncada ◽  
Carissa Garrity ◽  
Alice Wong ◽  
Barbro Filliquist ◽  
...  

AbstractThis study in dogs explored the feasibility of using cartilage fragments removed and discarded during routine palliative surgery for osteochondritis dissecans (OCD) as a source of primary chondrocytes for scaffold-free cartilage tissue-engineering. Primary chondrocytes were obtained from three OCD donors and one age-matched healthy articular cartilage (HAC) donor. After monolayer expansion of primary cells, a three-dimensional spherical suspension culture was implemented. Following this stage, cells were seeded at a high density into custom-made agarose molds that allowed for size and shape-specific constructs to be generated via a method of cellular self-assembling in a scaffold-free environment. Fifty-eight neocartilage constructs were tissue-engineered using this methodology. Neocartilage constructs and native cartilage from shoulder joint were subjected to histological, mechanical, and biochemical testing. OCD and HAC chondrocytes-sourced constructs had uniformly flat morphology and histology consistent with cartilage tissue. Constructs sourced from OCD chondrocytes were 1.5-times (32%) stiffer in compression and 1.3 times (23%) stronger in tension than constructs sourced from HAC chondrocytes and only 8.7-times (81%) less stiff in tension than native tissue. Constructs from both cell sources consistently had lower collagen content than native tissue (22.9%/dry weight [DW] for OCD and 4.1%/DW for HAC vs. 51.1%/DW native tissue). To improve the collagen content and mechanical properties of neocartilage, biological and mechanical stimuli, and thyroid hormone (tri-iodothyronine) were applied to the chondrocytes during the self-assembling stage in two separate studies. A 2.6-fold (62%) increase in compressive stiffness was detected with supplementation of biological stimuli alone and 5-fold (81%) increase with combined biological and mechanical stimuli at 20% strain. Application of thyroid hormone improved collagen content (1.7-times, 33%), tensile strength (1.8-times, 43%), and stiffness (1.3-times, 21%) of constructs, relative to untreated controls. Collectively, these data suggest that OCD chondrocytes can serve as a reliable cell source for cartilage tissue-engineering and that canine chondrocytes respond favorably to biological and mechanical stimuli that have been shown effective in chondrocytes from other animal species, including humans.


Author(s):  
Xiangbin Zeng ◽  
Zijie Meng ◽  
Jiankang He ◽  
Mao Mao ◽  
Xiao Li ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Dongxia Ge ◽  
Michael J. O’Brien ◽  
Felix H. Savoie ◽  
Jeffrey M. Gimble ◽  
Xiying Wu ◽  
...  

AbstractLocalized cartilage lesions in early osteoarthritis and acute joint injuries are usually treated surgically to restore function and relieve pain. However, a persistent clinical challenge remains in how to repair the cartilage lesions. We expressed doublecortin (DCX) in human adipose-derived stromal/stem cells (hASCs) and engineered hASCs into cartilage tissues using an in vitro 96-well pellet culture system. The cartilage tissue constructs with and without DCX expression were implanted in the knee cartilage defects of rabbits (n = 42) and monkeys (n = 12). Cohorts of animals were euthanized at 6, 12, and 24 months after surgery to evaluate the cartilage repair outcomes. We found that DCX expression in hASCs increased expression of growth differentiation factor 5 (GDF5) and matrilin 2 in the engineered cartilage tissues. The cartilage tissues with DCX expression significantly enhanced cartilage repair as assessed macroscopically and histologically at 6, 12, and 24 months after implantation in the rabbits and 24 months after implantation in the monkeys, compared to the cartilage tissues without DCX expression. These findings suggest that hASCs expressing DCX may be engineered into cartilage tissues that can be used to treat localized cartilage lesions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Engberg ◽  
Christina Stelzl ◽  
Olle Eriksson ◽  
Paul O’Callaghan ◽  
Johan Kreuger

AbstractBioprinting is increasingly used to create complex tissue constructs for an array of research applications, and there are also increasing efforts to print tissues for transplantation. Bioprinting may also prove valuable in the context of drug screening for personalized medicine for treatment of diseases such as cancer. However, the rapidly expanding bioprinting research field is currently limited by access to bioprinters. To increase the availability of bioprinting technologies we present here an open source extrusion bioprinter based on the E3D motion system and tool changer to enable high-resolution multimaterial bioprinting. As proof of concept, the bioprinter is used to create collagen constructs using freeform reversible embedding of suspended hydrogels (FRESH) methodology, as well as multimaterial constructs composed of distinct sections of laminin and collagen. Data is presented demonstrating that the bioprinted constructs support growth of cells either seeded onto printed constructs or included in the bioink prior to bioprinting. This open source bioprinter is easily adapted for different bioprinting applications, and additional tools can be incorporated to increase the capabilities of the system.


Author(s):  
Tharwat Haj Khalil ◽  
Adeeb Zoabi ◽  
Mizied Falah ◽  
Nora Nseir ◽  
Dror Ben David ◽  
...  

Author(s):  
Yi-Jung Hsu ◽  
Shih-Yen Wei ◽  
Teng-Yen Lin ◽  
Ling Fang ◽  
Yun-Ting Hsieh ◽  
...  
Keyword(s):  

2021 ◽  
pp. 149-169
Author(s):  
Kavit Amin ◽  
David Leonard ◽  
Li Yenn Yong ◽  
Ralph Murphy ◽  
Roxana Moscalu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document