cell encapsulation
Recently Published Documents


TOTAL DOCUMENTS

577
(FIVE YEARS 172)

H-INDEX

63
(FIVE YEARS 9)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Armin Mooranian ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
Susbin Raj Wagle ◽  
...  

Recent studies in our laboratories have shown promising effects of bile acids in ➀ drug encapsulation for oral targeted delivery (via capsule stabilization) particularly when encapsulated with Eudragit NM30D® and ➁ viable-cell encapsulation and delivery (via supporting cell viability and biological activities, postencapsulation). Accordingly, this study aimed to investigate applications of bile acid-Eudragit NM30D® capsules in viable-cell encapsulation ready for delivery. Mouse-cloned pancreatic β-cell line was cultured and cells encapsulated using bile acid-Eudragit NM30D® capsules, and capsules’ images, viability, inflammation, and bioenergetics of encapsulated cells assessed. The capsules’ thermal and chemical stability assays were also assessed to ascertain an association between capsules’ stability and cellular biological activities. Bile acid-Eudragit NM30D® capsules showed improved cell viability (e.g., F1 < F2 & F8; p < 0.05), insulin, inflammatory profile, and bioenergetics as well as thermal and chemical stability, compared with control. These effects were formulation-dependent and suggest, overall, that changes in ratios of bile acids to Eudragit NM30D® can change the microenvironment of the capsules and subsequent cellular biological activities.


2022 ◽  
pp. 491-528
Author(s):  
Milan Milivojevic ◽  
Ivana Pajic-Lijakovic ◽  
Branko Bugarski

Lab on a Chip ◽  
2022 ◽  
Author(s):  
Andreas Link ◽  
John S McGrath ◽  
Mustafa Zaimagaoglu ◽  
Thomas Franke

We demonstrate the use of an acoustic device to actively encapsulate single red blood cells into individual droplets in a T-junction. We compare the active encapsulation with the passive encapsulation...


Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Hojjatollah Nazari ◽  
Asieh Heirani-Tabasi ◽  
Sadegh Ghorbani ◽  
Hossein Eyni ◽  
Sajad Razavi Bazaz ◽  
...  

Microfluidics is a promising approach for the facile and large-scale fabrication of monodispersed droplets for various applications in biomedicine. This technology has demonstrated great potential to address the limitations of regenerative medicine. Microfluidics provides safe, accurate, reliable, and cost-effective methods for encapsulating different stem cells, gametes, biomaterials, biomolecules, reagents, genes, and nanoparticles inside picoliter-sized droplets or droplet-derived microgels for different applications. Moreover, microenvironments made using such droplets can mimic niches of stem cells for cell therapy purposes, simulate native extracellular matrix (ECM) for tissue engineering applications, and remove challenges in cell encapsulation and three-dimensional (3D) culture methods. The fabrication of droplets using microfluidics also provides controllable microenvironments for manipulating gametes, fertilization, and embryo cultures for reproductive medicine. This review focuses on the relevant studies, and the latest progress in applying droplets in stem cell therapy, tissue engineering, reproductive biology, and gene therapy are separately evaluated. In the end, we discuss the challenges ahead in the field of microfluidics-based droplets for advanced regenerative medicine.


Author(s):  
Hongyu Yang ◽  
Guang Yang ◽  
Ting Zhang ◽  
Deyong Chen ◽  
Junbo Wang ◽  
...  

Abstract This study presented constriction microchannel based droplet microfluidics realizing quantitative measurements of multiplex types of single-cell proteins with high throughput. Cell encapsulation with evenly distributed fluorescence labelled antibodies stripped from targeted proteins by proteinase K was injected into the constriction microchannel with the generated fluorescence signals captured and translated into protein numbers leveraging the equivalent detection volume formed by constriction microchannels in both droplet measurements and fluorescence calibration. In order to form the even distribution of fluorescence molecules within each droplet, the stripping effect of proteinase K to decouple binding forces between targeted proteins and fluorescence labelled antibodies was investigated and optimized. Using this microfluidic system, binding sites for beta-actin, alpha-tubulin, and beta-tubulin were measured as 1.15±0.59×106, 2.49±1.44×105, and 2.16±1.01×105 per cell of CAL 27 (N cell=15486), 0.98±0.58×106, 1.76±1.34×105 and 0.74±0.74×105 per cell of Hep G2 (N cell=18266). Neural net pattern recognition was used to differentiate CAL 27 and Hep G2 cells, producing successful rates of 59.4% (beta-actin), 64.9% (alpha-tubulin), 88.8% (beta-tubulin), and 93.0% in combination, validating the importance of quantifying multiple types of proteins. As a quantitative tool, this approach could provide a new perspective for single-cell proteomic analysis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lei Yang ◽  
Yuxiao Liu ◽  
Lingyu Sun ◽  
Cheng Zhao ◽  
Guopu Chen ◽  
...  

Abstract Bone defects caused by trauma, tumor, or osteoarthritis remain challenging due to the lack of effective treatments in clinic. Stem cell transplantation has emerged as an alternative approach for bone repair and attracted widespread attention owing to its excellent biological activities and therapy effect. The attempts to develop this therapeutic approach focus on the generation of effective cell delivery vehicles, since the shortcomings of direct injection of stem cells into target tissues. Here, we developed a novel core-shell microcapsule with a stem cell-laden core and a biomass shell by using all-aqueous phase microfluidic electrospray technology. The designed core-shell microcapsules showed a high cell viability during the culture procedure. In addition, the animal experiments exhibited that stem cell-laden core-shell microcapsules have good biocompatibility and therapeutic effect for bone defects. This study indicated that the core-shell biomass microcapsules generated by microfluidic electrospray have promising potential in tissue engineering and regenerative medicine.


2021 ◽  
Vol 12 (4) ◽  
pp. 68
Author(s):  
Armin Mooranian ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Susbin Raj Wagle ◽  
...  

Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.


2021 ◽  
Author(s):  
Armin Mooranian ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Susbin Raj Wagle ◽  
...  

Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.


Sign in / Sign up

Export Citation Format

Share Document