Abnormalities in the contractile properties of colonic smooth muscle in idiopathic slow transit constipation

1997 ◽  
Vol 84 (2) ◽  
pp. 181-184 ◽  
Author(s):  
B. J. Slater ◽  
J. S. Varma ◽  
J. I. Gillespie
2001 ◽  
Vol 193 (3) ◽  
pp. 390-397 ◽  
Author(s):  
Charles H. Knowles ◽  
Carole D. Nickols ◽  
S. Mark Scott ◽  
Nick I. Bennett ◽  
Ricardo Brandt de Oliveira ◽  
...  

2021 ◽  
Vol 18 (6) ◽  
pp. 1197-1204
Author(s):  
Wang Hao ◽  
Gong Yuxia ◽  
Li Youran ◽  
Xu Minmin ◽  
Gu Yunfe

Purpose: To determine the effect of atractylenolide-III (ATL-III) on loperamide-induced slow transit constipation (STC) in a rat STC model, and to elucidate the mechanisms involved. Methods: Male Wistar rats were divided into five groups (n=6 per group): normal control group (NG), model group, and three STC rat groups treated with different doses of ATL-III, viz, 5, 10 and 15 mg/kg. The rats were treated for 15 days. Feed consumption, fecal excretion and intestinal transit rate were determined. Nitric oxide synthase (NOS), somatostatin (SS), serotonin (5-HT), and vasoactive intestinal peptide (VIP) were measured with enzyme-linked immunosorbent assay (ELISA). The protein and mRNA expressions of C-kit, SCF, PKC, and PI-3K were assayed using Western blot analysis and realtime reverse transcription polymerase chain reaction (RT-PCR), respectively. Results: The amount, weight, and moisture content of stool, and water consumption were significantly higher in ATL-III-treated groups than in the untreated (model) group (p < 0.05), whereas no difference was observed in feed intake. Intestinal transit rate was higher in the ATL-III-treated groups (p < 0.05). Decreased NOS, SS and VIP levels and increased 5-HT level were seen in the ATL-III-treated groups (p < 0.05). ATL-III treatment also induced increases in smooth muscle cells, neuronal cells, and mucous layer (p<0.05). Results from RT-PCR and Western blot revealed that ATL-III–treated groups had elevated c-kit, SCF, PKC, as well as PI-3K mRNA and protein expressions (p < 0.05). Conclusion: These results suggest that ATL-III mitigates loperamide-induced STC in rats via stimulation of NOS, SS, VIP, and 5-HT secretions. It also increases smooth muscle cells, neuronal cells, and mucous layer, and regulates the signaling pathways involving PKC, PI3K, SCF, and c-kit.


Gut ◽  
2019 ◽  
Vol 69 (5) ◽  
pp. 868-876
Author(s):  
Amelia Mazzone ◽  
Peter R Strege ◽  
Simon J Gibbons ◽  
Constanza Alcaino ◽  
Vikram Joshi ◽  
...  

ObjectiveThis study was designed to evaluate the roles of microRNAs (miRNAs) in slow transit constipation (STC).DesignAll human tissue samples were from the muscularis externa of the colon. Expression of 372 miRNAs was examined in a discovery cohort of four patients with STC versus three age/sex-matched controls by a quantitative PCR array. Upregulated miRNAs were examined by quantitative reverse transcription qPCR (RT-qPCR) in a validation cohort of seven patients with STC and age/sex-matched controls. The effect of a highly differentially expressed miRNA on a custom human smooth muscle cell line was examined in vitro by RT-qPCR, electrophysiology, traction force microscopy, and ex vivo by lentiviral transduction in rat muscularis externa organotypic cultures.ResultsThe expression of 13 miRNAs was increased in STC samples. Of those miRNAs, four were predicted to target SCN5A, the gene that encodes the Na+ channel NaV1.5. The expression of SCN5A mRNA was decreased in STC samples. Let-7f significantly decreased Na+ current density in vitro in human smooth muscle cells. In rat muscularis externa organotypic cultures, overexpression of let-7f resulted in reduced frequency and amplitude of contraction.ConclusionsA small group of miRNAs is upregulated in STC, and many of these miRNAs target the SCN5A-encoded Na+ channel NaV1.5. Within this set, a novel NaV1.5 regulator, let-7f, resulted in decreased NaV1.5 expression, current density and reduced motility of GI smooth muscle. These results suggest NaV1.5 and miRNAs as novel diagnostic and potential therapeutic targets in STC.


2000 ◽  
Vol 118 (4) ◽  
pp. A834 ◽  
Author(s):  
Charles H. Knowles ◽  
Carole D. Nickols ◽  
Mark Scott ◽  
Ricardo Brandt de Oliveira ◽  
Leila Chimelli ◽  
...  

2020 ◽  
Vol 58 (10) ◽  
pp. 975-981
Author(s):  
Thomas Frieling ◽  
Christian Kreysel ◽  
Michael Blank ◽  
Dorothee Müller ◽  
Ilka Melchior ◽  
...  

Abstract Background Neurological autoimmune disorders (NAD) are caused by autoimmune inflammation triggered by specific antibody subtypes. NAD may disturb the gut-brain axis at several levels including brain, spinal cord, peripheral, or enteric nervous system. Case report We present a case with antinuclear neuronal Hu (ANNA-1)- and antiglial nuclear (SOX-1) autoimmune antibody-positive limbic encephalitis and significant gastrointestinal dysmotility consisting of achalasia type II, gastroparesis, altered small intestinal interdigestive motility, and severe slow transit constipation. The autoantibodies of the patient’s serum labeled enteric neurons and interstitial cells of Cajal but no other cells in the gut wall. Achalasia was treated successfully by pneumatic cardia dilation and gastrointestinal dysmotility successfully with prucalopride. Conclusion NAD may disturb gastrointestinal motility by altering various levels of the gut-brain axis.


Sign in / Sign up

Export Citation Format

Share Document