organotypic cultures
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 49)

H-INDEX

45
(FIVE YEARS 3)

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi205-vi205
Author(s):  
Brian Andersen ◽  
Michael Wheeler ◽  
Zhaorong Li ◽  
E Antonio Chiocca ◽  
David Reardon ◽  
...  

Abstract Cell-cell interactions are thought to drive tumor-promoting signals in the microenvironment of glioblastoma, but standard approaches for single cell analysis do not directly identify cell interactions and the mechanisms that mediate them. We recently developed a novel method to analyze cell-cell interactions—rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNAseq). RABID-seq was first implemented in transgenic mice to investigate the interactions of astrocytes with other cells in the CNS enabling the study of astrocyte connectome perturbations and candidate therapeutic targets in multiple sclerosis and its pre-clinical model, experimental autoimmune encephalomyelitis (EAE). Here, we report the first use of RABID-seq in human tissues in organotypic cultures established from three IDH-wildtype glioblastoma (GBM) patients. In organotypic GBM cultures, initial infection by pseudotyped barcoded rabies virus deficient for viral glycoprotein was achieved after previous culture transduction with a lentivirus containing the avian TVA receptor and rabies glycoprotein under the human EF1a promoter. We employed this system to initially infect approximately 1,000 malignant or non malignant cells in the tumor microenvironment. After five days, infected cells were isolated from cultures and processed for single cell analysis using SMART seq. We were able to capture at least 6,000 interacting cells per tumor specimen, from which barcodes were recovered and cDNA was sent for sequencing. Here we present connectomic data from our initial cohort of three glioblastoma patients as an introduction to RABID-seq, with a focus on astrocyte-tumor interactions. Candidate mechanisms of cellular interactions will undergo functional validation in murine models of glioblastoma.


2021 ◽  
Author(s):  
Jeremy D Kratz ◽  
Shujah Rehman ◽  
Katherine A Johnson ◽  
Amani A Gillette ◽  
Aishwarya Sunil ◽  
...  

Tumor heterogeneity is predicted to confer inferior clinical outcomes, however modeling heterogeneity in a manner that still represents the tumor of origin remains a formidable challenge. Sequencing technologies are limited in their ability to identify rare subclonal populations and predict response to the multitude of available treatments for patients. Patient-derived organotypic cultures have significantly improved the modeling of cancer biology by faithfully representing the molecular features of primary malignant tissues. Patient-derived cancer organoid (PCO) cultures contain numerous individual organoids with the potential to recapitulate heterogeneity, though PCOs are most commonly studied in bulk ignoring any diversity in the molecular profile or treatment response. Here we demonstrate the advantage of evaluating individual PCOs in conjunction with cellular level optical metabolic imaging to characterize the largely ignored heterogeneity within these cultures to predict clinical therapeutic response, identify subclonal populations, and determine patient specific mechanisms of resistance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marion Ferren ◽  
Valérie Favède ◽  
Didier Decimo ◽  
Mathieu Iampietro ◽  
Nicole A. P. Lieberman ◽  
...  

AbstractSARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals. These models are not dedicated to investigate how the virus reaches the brain. However, they allow validating the early tropism of the virus in the lungs and demonstrating that SARS-CoV-2 could infect the brainstem and the cerebellum, mainly by targeting granular neurons. Viral infection induces specific interferon and innate immune responses with patterns specific to each organ, along with cell death by apoptosis, necroptosis, and pyroptosis. Overall, our data illustrate the potential of rapid modeling of complex tissue-level interactions during infection by a newly emerged virus.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Stefania Forciniti ◽  
Marta Cavo ◽  
Ilaria Dando ◽  
Elisa Dalla Pozza ◽  
Marta Palmieri ◽  
...  

In this study we produced 3D organotypic cultures and spheroids to mimic the complex microenvironment of pancreatic cancer and to test alternative therapeutic strategies.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4890
Author(s):  
Bénédicte Brulin ◽  
John C. Nolan ◽  
Tecla Marangon ◽  
Milan Kovacevic ◽  
Mathias Chatelais ◽  
...  

Improvements in the clinical outcome of osteosarcoma have plateaued in recent decades with poor translation between preclinical testing and clinical efficacy. Organotypic cultures retain key features of patient tumours, such as a myriad of cell types organized within an extracellular matrix, thereby presenting a more realistic and personalised screening of chemotherapeutic agents ex vivo. To test this concept for the first time in osteosarcoma, murine and canine osteosarcoma organotypic models were maintained for up to 21 days and in-depth analysis identified proportions of immune and stromal cells present at levels comparable to that reported in vivo in the literature. Cytotoxicity testing of a range of chemotherapeutic drugs (mafosfamide, cisplatin, methotrexate, etoposide, and doxorubicin) on murine organotypic culture ex vivo found limited response to treatment, with immune and stromal cells demonstrating enhanced survival over the global tumour cell population. Furthermore, significantly decreased sensitivity to a range of chemotherapeutics in 3D organotypic culture relative to 2D monolayer was observed, with subsequent investigation confirming reduced sensitivity in 3D than in 2D, even at equivalent levels of drug uptake. Finally, as proof of concept for the application of this model to personalised drug screening, chemotherapy testing with doxorubicin was performed on biopsies obtained from canine osteosarcoma patients. Together, this study highlights the importance of recapitulating the 3D tumour multicellular microenvironment to better predict drug response and provides evidence for the utility and possibilities of organotypic culture for enhanced preclinical selection and evaluation of chemotherapeutics targeting osteosarcoma.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii10-ii10
Author(s):  
L Zhu ◽  
C Blanco-Aparicio ◽  
L Bertero ◽  
R Soffietti ◽  
T Weiss ◽  
...  

Abstract BACKGROUND The diagnosis of brain metastasis involves high morbidity and mortality and remains an unmet clinical need in spite of being the most common tumor in the brain. Exclusion of these cancer patients from clinical trials is a major cause of their limited therapeutic options. MATERIAL AND METHODS We report a novel drug-screening platform (METPlatform) based on organotypic cultures which allows identifying effective anti-metastasis agents in the presence of the organ microenvironment. We have applied this approach to clinically relevant stages of brain metastasis using both experimental models and human tumor tissue (by performing patient-derived organotypic cultures - PDOCs -). We have also used METPlatform to perform unbiased proteomics of brain metastases in situ to identify potential novel mediators of this disease and explore resistance mechanisms to targeted therapy. Finally, we have exploited METPlatform as “avatars” to predict response to therapy in patients with primary brain tumors. RESULTS We identified heat shock protein 90 (HSP90) as a promising therapeutic target for brain metastasis. DEBIO-0932, a blood-brain barrier permeable HSP90 inhibitor, shows high potency against mouse and human brain metastases from different primary origin and oncogenomic profile at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis of brain metastases treated with the chaperone inhibitor revealed non-canonical clients of HSP90 as potential novel mediators of brain metastasis and actionable mechanisms of resistance driven by autophagy. Combined therapy using HSP90 and autophagy inhibitors showed synergistic effects compared to sublethal concentrations of each monotherapy, demonstrating the potential of METPlatform to design and test rationale combination therapies to target metastasis more effectively. Finally, we show that brain tumor PDOCs predict the response of the corresponding patient to standard of care, thus proving the potential of METPlatform for improving personalized care in cancer. CONCLUSION Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is fully compatible with human samples and questions the rationale of excluding patients with brain metastasis from clinical trials. We envision that METPlatform will be established as a clinically relevant strategy to personalize the management of metastatic disease in the brain and elsewhere.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009196
Author(s):  
Samantha P. Sherrill ◽  
Nicholas M. Timme ◽  
John M. Beggs ◽  
Ehren L. Newman

The directionality of network information flow dictates how networks process information. A central component of information processing in both biological and artificial neural networks is their ability to perform synergistic integration–a type of computation. We established previously that synergistic integration varies directly with the strength of feedforward information flow. However, the relationships between both recurrent and feedback information flow and synergistic integration remain unknown. To address this, we analyzed the spiking activity of hundreds of neurons in organotypic cultures of mouse cortex. We asked how empirically observed synergistic integration–determined from partial information decomposition–varied with local functional network structure that was categorized into motifs with varying recurrent and feedback information flow. We found that synergistic integration was elevated in motifs with greater recurrent information flow beyond that expected from the local feedforward information flow. Feedback information flow was interrelated with feedforward information flow and was associated with decreased synergistic integration. Our results indicate that synergistic integration is distinctly influenced by the directionality of local information flow.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 975
Author(s):  
Ander Egimendia ◽  
Susana Carregal-Romero ◽  
Iñaki Osorio-Querejeta ◽  
Daniel Padro ◽  
Jesús Ruiz-Cabello ◽  
...  

Ex vivo models for the noninvasive study of myelin-related diseases represent an essential tool to understand the mechanisms of diseases and develop therapies against them. Herein, we assessed the potential of multimodal imaging traceable myelin-targeting liposomes to quantify myelin in organotypic cultures. Methods: MRI testing was used to image mouse cerebellar tissue sections and organotypic cultures. Demyelination was induced by lysolecithin treatment. Myelin-targeting liposomes were synthetized and characterized, and their capacity to quantify myelin was tested by fluorescence imaging. Results: Imaging of freshly excised tissue sections ranging from 300 µm to 1 mm in thickness was achieved with good contrast between white (WM) and gray matter (GM) using T2w MRI. The typical loss of stiffness, WM structures, and thickness of organotypic cultures required the use of diffusion-weighted methods. Designed myelin-targeting liposomes allowed for semiquantitative detection by fluorescence, but the specificity for myelin was not consistent between assays due to the unspecific binding of liposomes. Conclusions: With respect to the sensitivity, imaging of brain tissue sections and organotypic cultures by MRI is feasible, and myelin-targeting nanosystems are a promising solution to quantify myelin ex vivo. With respect to specificity, fine tuning of the probe is required. Lipid-based systems may not be suitable for this goal, due to unspecific binding to tissues.


2021 ◽  
Author(s):  
Akari Oda ◽  
Sakura Inoue ◽  
Ryo Kaneko ◽  
Yasuto Narita ◽  
Suzuka Shiono ◽  
...  

Abstract The neuroplastic mechanism of sex reversal in the fish brain remains unclear due to the difficulty in identifying the key neurons involved. Mozambique tilapia show different reproductive behaviours between sexes; males build circular breeding nests while females hold and brood fertilized eggs in their mouth. In tilapia, gonadotropin-releasing hormone 3 (GnRH3) neurons, located in the terminal nerve, regulate male reproductive behaviour. Mature males have more GnRH3 neurons than mature females, and these neurons have been indicated to play a key role in the androgen-induced female-to-male sex reversal of the brain. We aimed to elucidate the signalling pathway involved in the androgen-induced increase in GnRH3 neurons in mature female tilapia. Applying inhibitors to organotypic cultures of brain slices, we showed that the insulin-like growth factor (IGF)-1 receptor (IGF-1R)/PI3K/AKT/mTOR pathway contributed to the androgen-induced increase in GnRH3 neurons. The involvement of IGF-1 and IGF-1R in 11-ketotestosterone (11-KT)-induced development of GnRH3 neurons was supported by an increase in Igf-1 mRNA shortly after 11-KT treatment, the increase of GnRH3 neurons after IGF-1 treatment and the expression of IGF-1 in GnRH3 neurons. Our findings highlight the involvement of IGF-1 and its downstream signalling pathway in the sex reversal of the tilapia brain.


2021 ◽  
Vol 22 (11) ◽  
pp. 6128
Author(s):  
Ana Rita Vaz ◽  
Daniela Vizinha ◽  
Hermes Morais ◽  
Ana Rita Colaço ◽  
Gecioni Loch-Neckel ◽  
...  

miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.


Sign in / Sign up

Export Citation Format

Share Document