Genome Mining of the Biosynthetic Gene Cluster of the Polyene Macrolide Antibiotic Tetramycin and Characterization of a P450 Monooxygenase Involved in the Hydroxylation of the Tetramycin B Polyol Segment

ChemBioChem ◽  
2012 ◽  
Vol 13 (15) ◽  
pp. 2234-2242 ◽  
Author(s):  
Bo Cao ◽  
Fen Yao ◽  
Xiaoqing Zheng ◽  
Dongbing Cui ◽  
Yucheng Shao ◽  
...  
2016 ◽  
Vol 7 (3) ◽  
pp. 2440-2440 ◽  
Author(s):  
Junko Yaegashi ◽  
Jillian Romsdahl ◽  
Yi-Ming Chiang ◽  
Clay C. C. Wang

Correction for ‘Genome mining and molecular characterization of the biosynthetic gene cluster of a diterpenic meroterpenoid, 15-deoxyoxalicine B, in Penicillium canescens’ by Junko Yaegashi et al., Chem. Sci., 2015, 6, 6537–6544.


2007 ◽  
Vol 73 (22) ◽  
pp. 7400-7407 ◽  
Author(s):  
Aina Nedal ◽  
Håvard Sletta ◽  
Trygve Brautaset ◽  
Sven E. F. Borgos ◽  
Olga N. Sekurova ◽  
...  

ABSTRACT The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the β-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.


2011 ◽  
Vol 64 (3) ◽  
pp. 221-227 ◽  
Author(s):  
Jie Hu ◽  
Hiroto Okawa ◽  
Kentaro Yamamoto ◽  
Kazuhiko Oyama ◽  
Masaaki Mitomi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document