The role of children's bone marrow mesenchymal stromal cells in the ex vivo expansion of autologous and allogeneic hematopoietic stem cells

2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou
Author(s):  
Valentina Orticelli ◽  
Andrea Papait ◽  
Elsa Vertua ◽  
Patrizia Bonassi Signoroni ◽  
Pietro Romele ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1367-1367 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Wolfgang Wagner ◽  
Frederik Wein ◽  
Mario Stephan Schubert ◽  
...  

Abstract The interaction between human hematopoietic stem cells (HSC) and their niche plays a key role in regulating maintenance of “stemness” and differentiation. We have demonstrated that a feeder layer of human mesenchymal stromal cells (MSC) can serve as a surrogate model for the niche for human HSC. We could also show, MSC are intimately connected to one another by a novel kind of adhering junction, consisting of villiformto-vermiform cell projections (processus adhaerentes). With this background, we have analyzed the intercellular junctional complexes between HSC and MSC. In comparison, we also studied the cell-cell contacts between leukemia cells (LC) and MSC. MSC were derived from bone marrow aspirates from healthy voluntary donors. HSC were isolated from umbilical cord blood. Leukemia cells that were CD34+ were obtained from bone marrow aspirates from patients suffering from acute myeloid leukemia at the time point of initial diagnosis. After 24–48 hours of co-cultivation, we stained the cellular contacts with a panel of antibodies specific for various components of tight, gap and adherens junctions. Using advanced confocal laser scanning microscopy in combination with deconvolution and volume rendering software, we were able to produce 3D-images of intercellular junctions between HSC/MSC as well as between LC/MSC. To examine the specific function of N-cadherin, we analyzed the effect of siRNA knock down of N-cadherin in MSC upon co-cultures of HSC and MSC. Intercellular connections between HSC and MSC are mainly characterized by podia formation of the HSC linking to the adjacent MSC. At the intimate contact zone to the MSC, we have identified the cytoplasmic plaque proteins alpha- and beta-catenin, co-localized with the transmembrane glycoprotein N-cadherin. Additionally, we compared these findings with a similar setting consisting of human LC co-cultured with feeder-layer of MSC. Our results demonstrated that in comparison to HSC, the proportion of leukemia cells adherent to the feeder-layer is significantly lower and podia formation is less frequent (ratio 1:3). However, the mechanism of adhesion through cadherin-catenin-complex has remained the same. At a functional level, we found that siRNA knock down of N-cadherin in MSC resulted in decreased adhesion of HSC to MSC and in a reduction of cell divisions of HSC. These results confirm that direct cellular contact via N-cadherin-based junctions is essential for homing and adhesion of HSC to the cellular niche and subsequently for the regulation of self-renewal versus differentiation in HSC.


2013 ◽  
Vol 4 (3) ◽  
pp. 220-230 ◽  
Author(s):  
Shahina Akhter ◽  
Md. Mashiar Rahman ◽  
Hyun Seo Lee ◽  
Hyeon-Jin Kim ◽  
Seong-Tshool Hong

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1363-1363
Author(s):  
Junke Zheng ◽  
HoangDinh Huynh ◽  
Chengcheng Zhang

Abstract We previously identified a group of angiopoietin-like proteins (Angptls) as new growth factors that stimulate ex vivo expansion of hematopoietic stem cells (HSCs). To investigate the physiological function of Angptl3 in bone marrow, we characterized the Angptl3 deficient mice, and identified several defects in the hematopoietic compartment. When we transplanted wild-type HSCs into lethally irradiated Angptl3 deficient mice, we found that the mutant bone marrow stroma have much lower ability to support in vivo expansion of HSCs. We sought to identify the Angptl3-producing cells in mouse bone marrow stroma, and showed that Angptl3 is highly expressed in CD45-SSEA4+ cells, which are mesenchymal stem cells (MSCs). Indeed, the co-culture of HSCs with CD45-SSEA4+ MSCs resulted in ex vivo expansion of HSCs. DNA microarray analysis, real-time RT-PCR, and flow cytometry were used to identify the intracellular factors that are responsible for Angptl3’s effects on HSCs. This investigation demonstrated that Angptl3-stimulated HSC expansion is contributed by its activities to support HSC self-renewal and inhibit hematopoietic differentiation. Our study will likely lead to the identification of a novel component of the niche for HSCs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 798-798
Author(s):  
Kiyoshi Ando ◽  
Takashi Yahata ◽  
Tadayuki Sato ◽  
Hiroko Miyatake ◽  
Hideyuki Matsuzawa ◽  
...  

Abstract Ex vivo expansion of hematopoietic stem cells (HSC) is a major challenge for clinical and experimental transplantation protocols. However, no significant clinical benefit has been demonstrated to date. Clonal kinetics of ex vivo-expanded HSCs is one of the basic transplantation biology questions to be addressed before we can optimize ex vivo expansion approaches. To characterize human HSC, xenotransplantation techniques such as the severe combined immunodeficiency (SCID) mouse repopulating cell (SRC) assay have proven the most reliable methods thus far. While SRC quantification by limiting dilution analysis (LDA) is the gold standard for measuring in vitro expansion of human HSC, LDA is a statistical method and does not directly establish that a single HSC has self renewed in vitro. By using lentiviral gene-marking and direct intra-bone marrow injection of cultured CD34+ CB cells, we demonstrate here the first direct evidence for self-renewal of individual SRC clones in vitro. To detect multiplied clones, 5x104 gene-marked CD34+ cells were cultured for 4 days in our ex vivo expansion culture system (Exp Hematol, 27:904–915, 1999), and then divided into 10 lots, each of which was transplanted directly into the bone marrow of a NOD/SCID mouse. We used linear amplification-mediated (LAM)-PCR to detect unique genomic-proviral junctions as clonal markers. Detection of the same clones in different mice would provide direct evidence of ex vivo multiplication of a SRC clone. We identified 20 clone-specific genomic-proviral junction sequences by LAM-PCR on 10 mice. Although 14 clones were detected in only one mouse, six clones were detected in more than 2 mice. In the next experiment, purified CD19+EGFP+ and CD33+EGFP+ cells from each mouse were analyzed for each clone to detect multi-lineage differentiation of amplified SRCs. We identified 15 clonal markers from 6 mice. While 12 clones were present in only one mouse, 3 clones were present in 2 independent mice and reconstituted both CD19+and CD33+cells. Finally, we designed a secondary transplantation experiment to confirm the self-renewal ability of each clone. We identified 39 clonal markers from 10 primary and 10 secondary transplanted mice, 11 of which were detected in multiple mice with secondary transplantable ability. Together, of 74 clones analyzed, 20 clones (27%) divided and repopulated in more than two mice after serum-free and stroma-dependent culture. Some of them were secondary transplantable. Furthermore, we identified new class of stem cells based not on repopulation, or cell surface markers, but on response to cytokine stimulation in vitro. Our data demonstrate that current ex vivo expansion conditions result in reliable stem cell expansion and the clonal tracking we have employed is the only reliable method that can be used in the development of clinically appropriate expansion methods.


Sign in / Sign up

Export Citation Format

Share Document