Periodic Operation with Modulation of Inlet Concentration and Flow Rate Part II: Adiabatic Continuous Stirred-Tank Reactor

2016 ◽  
Vol 39 (11) ◽  
pp. 2126-2134 ◽  
Author(s):  
Daliborka Nikolić ◽  
Matthias Felischak ◽  
Andreas Seidel-Morgenstern ◽  
Menka Petkovska
2021 ◽  
Vol 17 (2) ◽  
pp. 181-194
Author(s):  
Fadzil Noor Gonawan ◽  
Azlina Harun Kamaruddin

The continuous-stirred-tank reactor (CSTR) is favorable for bi-phasic enzymatic reaction due to ease of operation, cost-effective and low downtime. Lack of study on the enzymatic reaction in the CSTR has disfavor this type of reactor compared to batch and packed bed. Presently, a simulation was carried out to simulate the behavior of the lipase-catalyzed production of biodiesel by using CSTR at isothermal conditions. The mathematical model incorporated the effect of the kinetic, thermal, and operating parameters. The parameters such as Michaelis constant (Km), inhibition constant (Ki), Gibbs inactivation energy (DelG) and mol flow rate are among determining factors of the course of the reaction. It is suggested that the enzyme with lower , higher , and higher  should be chosen for the reaction. In continuous operation in the CSTR, the volumetric flow rate of the substrates and the initial concentration of the feed could be used to control reaction performance as these parameters will determine the total mol or ratio of the substrates in the reactor. Most, importantly, the longer residence time is preferred to achieve higher conversion, however, the volumetric flow rate must not be too low to prevent underperformance of reaction.


2011 ◽  
Vol 403-408 ◽  
pp. 3454-3460
Author(s):  
Fazlollah Armoon ◽  
Hooshang Jazayeri-Rad

Since chemical reactors are utilized to produce specific and valuable products, concentration of products should be regulated at a specified level. As a disturbance input, a change in the inlet concentrations can vary the product concentration. So, in order to regulate the product concentration, the inlet concentrations and the product concentration should be measured. However, measurement of concentration encounters some problems such as high cost and time delay. For compensation of these failures, estimation of concentration has been proposed. In this work, the inlet concentration and the product concentration of a continuous stirred-tank reactor (CSTR) are estimated based on the moving horizon state estimation (MHSE), and the product concentration is regulated based on the model predictive control (MPC). Simulation results indicate that the proposed strategy improves the performance of the CSTR compared with the method in which the inlet concentration is not estimated.


Sign in / Sign up

Export Citation Format

Share Document