isothermal conditions
Recently Published Documents


TOTAL DOCUMENTS

701
(FIVE YEARS 123)

H-INDEX

38
(FIVE YEARS 6)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 345
Author(s):  
Ioannis S. Tsagkalias ◽  
Dimitrios S. Achilias

Functional groups in a monomer molecule usually play an important role during polymerization by enhancing or decreasing the reaction rate due to the possible formation of side bonds. The situation becomes more complicated when polymerization takes place in the presence of graphene oxide since it also includes functional groups in its surface. Aiming to explore the role of functional groups on polymerization rate, the in situ bulk radical polymerization of hydroxyethyl acrylate (HEA) in the presence or not of graphene oxide was investigated. Differential scanning calorimetry was used to continuously record the reaction rate under both isothermal and non-isothermal conditions. Simple kinetic models and isoconversional analysis were used to estimate the variation of the overall activation energy with the monomer conversion. It was found that during isothermal experiments, the formation of both inter- and intra-chain hydrogen bonds between the monomer and polymer molecules results in slower polymerization of neat HEA with higher overall activation energy compared to that estimated in the presence of GO. The presence of GO results in a dissociation of hydrogen bonds between monomer and polymer molecules and, thus, to higher reaction rates. Isoconversional methods employed during non-isothermal experiments revealed that the presence of GO results in higher overall activation energy due to the reaction of more functional groups on the surface of GO with the hydroxyl and carbonyl groups of the monomer and polymer molecules, together with the reaction of primary initiator radicals with the surface hydroxyl groups in GO.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 26
Author(s):  
Felicia Rodríguez ◽  
Efrén Aguilar-Garnica ◽  
Adrián Santiago-Toribio ◽  
Arturo Sánchez

Hydrothermal pretreatment (HP) is an eco-friendly process for deconstructing lignocellulosic biomass (LCB) that plays a key role in ensuring the profitability of producing biofuels or bioproducts in a biorefinery. At the laboratory scale, HP is usually carried out under non-isothermal regimes with poor temperature control. In contrast, HP is usually carried out under isothermal conditions at the commercial scale. Consequently, significant discrepancies in the values of polysaccharide releases are found in the literature. Therefore, laboratory-scale HP data are not trustworthy if scale-up or retrofitting of HP at larger scales is required. This contribution presents the results of laboratory-scale batch HP for wheat straw in terms of xylan and glucan release that were obtained with rigorous temperature control under isothermal conditions during the reaction stage. The heating and cooling stages were carried out with fast rates (43 and −40 °C/min, respectively), minimizing non-isothermal reaction periods. Therefore, the polysaccharide release results can be associated exclusively with the isothermic reaction stage and can be considered as a reliable source of information for HP at commercial scales. The highest amount of xylan release was 4.8 g/L or 43% obtained at 180 °C and 20 min, while the glucan release exhibited a maximum of 1.2 g/L or 5.5%. at 160 °C/180 °C and 30 min.


2021 ◽  
Author(s):  
Ahmed M. Abdel Hakeem ◽  
M. M. Abd El-Raheem ◽  
Mostafa Mohamed Wakkad ◽  
Hany Mohamed ◽  
Hazem Mahmoud Ali ◽  
...  

Abstract The crystallization characteristics for Ge18Bi4Se78 glass are studied in this work by means of DTA under the non-isothermal conditions. One stage endothermic glass transition and one exothermic crystallization are observed in the DTA curves. The results of topological constraints for Ge18Bi4Se78 glass show that the calculated value of glass transition temperature (Tg) is very close to that of the experimental results. The as-prepared as well as the annealed samples are examined using XRD, EDX, SEM techniques. Avrami exponent reveals the complicated stage of growth. Many models are used to estimate the activation energies for glass transition (Eg) and crystallization (Ec). The crystallization process found to be described by the Sestak- Berggren SB(M,N) model.


Sign in / Sign up

Export Citation Format

Share Document