Olefin Polymerization Catalyzed by Double-Decker Dipalladium Complexes: Low Branched Poly(α-Olefin)s by Selective Insertion of the Monomer Molecule

2015 ◽  
Vol 21 (45) ◽  
pp. 16209-16218 ◽  
Author(s):  
Shigenaga Takano ◽  
Daisuke Takeuchi ◽  
Kohtaro Osakada
2013 ◽  
Vol 52 (48) ◽  
pp. 12536-12540 ◽  
Author(s):  
Daisuke Takeuchi ◽  
Yuriko Chiba ◽  
Shigenaga Takano ◽  
Kohtaro Osakada

2013 ◽  
Vol 125 (48) ◽  
pp. 12768-12772 ◽  
Author(s):  
Daisuke Takeuchi ◽  
Yuriko Chiba ◽  
Shigenaga Takano ◽  
Kohtaro Osakada

2020 ◽  
Author(s):  
Radu Talmazan ◽  
Klaus R. Liedl ◽  
Bernhard Kräutler ◽  
Maren Podewitz

We analyze the mechanism of the topochemically controlled difunctionalization of C60 and anthracene, where an anthracene molecule is transferred from one C60 monoadduct to another one under exclusive formation of equal amounts of C60 and the difficult to make antipodal C60 bisadduct. Our herein disclosed dispersion corrected DFT studies show the anthracene transfer to take place in a synchronous retro Diels-Alder/Diels-Alder reaction: an anthracene molecule dissociates from one fullerene under formation of an intermediate, while already undergoing stabilizing interactions with both neighboring fullerenes, facilitating the reaction kinetically. In the intermediate, a planar anthracene molecule is sandwiched between two neighboring fullerenes and forms equally strong "double-decker" type pi-pi stacking interactions with both of these fullerenes. Analysis with the distorsion interaction model shows that the anthracene unit of the intermediate is almost planar with minimal distorsions. This analysis sheds light on the existence of noncovalent interactions engaging both faces of a planar polyunsaturated ring and two convex fullerene surfaces in an unprecedented 'inverted sandwich' structure. Hence, it sheds light on new strategies to design functional fullerene based materials.<br>


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1603-1615
Author(s):  
Chandana Pal ◽  
Isabelle Chambrier ◽  
Andrew N. Cammidge ◽  
A. K. Sharma ◽  
Asim K. Ray

In-plane electrical characteristics of non-peripherally octyl(C[Formula: see text]H[Formula: see text]- and hexyl(C[Formula: see text]H[Formula: see text]-substituted liquid crystalline (LC) double decker lanthanide bisphthalocyanine (LnPc[Formula: see text] complexes with central metal ions lutetium (Lu), and gadolinium (Gd) have been measured in thin film formulations on interdigitated gold (Au) electrodes for the applied voltage ([Formula: see text] range of [Formula: see text]. The conduction mechanism is found to be Ohmic within the bias of [Formula: see text] while the bulk limited Poole–Frenkel mechanism is responsible for the higher bias. The compounds show individual characteristics depending on the central metal ions, substituent chain lengths and their mesophases. Values of 67.55 [Formula: see text]cm[Formula: see text] and 42.31 [Formula: see text]cm[Formula: see text] have been obtained for room temperature in-plane Ohmic conductivity of as-deposited octyl lutetium (C[Formula: see text]LuPc[Formula: see text] and hexyl gadolinium (C[Formula: see text]GdPc[Formula: see text] films, respectively while C[Formula: see text]GdPc[Formula: see text] films exhibit nearly two orders of magnitude smaller conductivity. On annealing at 80[Formula: see text]C, Ohmic conductivities of C[Formula: see text]LuPc[Formula: see text] and C[Formula: see text]GdPc[Formula: see text] are found to have increased but the conductivity of C[Formula: see text]GdPc[Formula: see text] decreased by more than one order of magnitude to 1.5 [Formula: see text]cm[Formula: see text]. For physical interpretation of the charge transport behavior of these three molecules, their UV-vis optical absorption spectra in the solution and in as-deposited and annealed solid phases and atomic force microscopy study have been performed. It is believed that both orientation and positional reorganizations are responsible, depending upon the size of the central ion and side chain length.


Langmuir ◽  
2011 ◽  
Vol 27 (14) ◽  
pp. 9068-9068 ◽  
Author(s):  
Asuman C. Kucuk ◽  
Jun Matsui ◽  
Tokuji Miyashita

Sign in / Sign up

Export Citation Format

Share Document