scholarly journals Cover Feature: Mechanistic Studies on the Role of [CuII (CO3 ) n ]2−2n as a Water Oxidation Catalyst: Carbonate as a Non-Innocent Ligand (Chem. Eur. J. 5/2018)

2017 ◽  
Vol 24 (5) ◽  
pp. 1000-1000
Author(s):  
Amir Mizrahi ◽  
Eric Maimon ◽  
Haim Cohen ◽  
Haya Kornweitz ◽  
Israel Zilbermann ◽  
...  
2017 ◽  
Vol 24 (5) ◽  
pp. 1088-1096 ◽  
Author(s):  
Amir Mizrahi ◽  
Eric Maimon ◽  
Haim Cohen ◽  
Haya Kornweitz ◽  
Israel Zilbermann ◽  
...  

2019 ◽  
Vol 117 (23) ◽  
pp. 12564-12571 ◽  
Author(s):  
Degao Wang ◽  
Fujun Niu ◽  
Michael J. Mortelliti ◽  
Matthew V. Sheridan ◽  
Benjamin D. Sherman ◽  
...  

In the development of photoelectrochemical cells for water splitting or CO2reduction, a major challenge is O2evolution at photoelectrodes that, in behavior, mimic photosystem II. At an appropriate semiconductor electrode, a water oxidation catalyst must be integrated with a visible light absorber in a stable half-cell configuration. Here, we describe an electrode consisting of a light absorber, an intermediate electron donor layer, and a water oxidation catalyst for sustained light driven water oxidation catalysis. In assembling the electrode on nanoparticle SnO2/TiO2electrodes, a Ru(II) polypyridyl complex was used as the light absorber, NiO was deposited as an overlayer, and a Ru(II) 2,2′-bipyridine-6,6′-dicarboxylate complex as the water oxidation catalyst. In the final electrode, addition of the NiO overlayer enhanced performance toward water oxidation with the final electrode operating with a 1.1 mA/cm2photocurrent density for 2 h without decomposition under one sun illumination in a pH 4.65 solution. We attribute the enhanced performance to the role of NiO as an electron transfer mediator between the light absorber and the catalyst.


2015 ◽  
Vol 44 (29) ◽  
pp. 12981-12984 ◽  
Author(s):  
Ian G. McKendry ◽  
Sandeep K. Kondaveeti ◽  
Samantha L. Shumlas ◽  
Daniel R. Strongin ◽  
Michael J. Zdilla

The role of the manganese average oxidation state (AOS) in water oxidation catalysis by birnessite was investigated.


2012 ◽  
Vol 18 (52) ◽  
pp. 16947-16954 ◽  
Author(s):  
Oscar Verho ◽  
Marléne D. V. Dilenstam ◽  
Markus D. Kärkäs ◽  
Eric V. Johnston ◽  
Torbjörn Åkermark ◽  
...  

ChemInform ◽  
2013 ◽  
Vol 44 (20) ◽  
pp. no-no
Author(s):  
Oscar Verho ◽  
Marlene D. V. Dilenstam ◽  
Markus D. Kaerkaes ◽  
Eric V. Johnston ◽  
Torbjoern Aakermark ◽  
...  

2019 ◽  
Author(s):  
Andrew Romine ◽  
Kin Yang ◽  
Malkanthi Karunananda ◽  
Jason Chen ◽  
Keary Engle

A weakly coordinating monodentate heteroaryl thioether directing group has been developed for use in Pd(II) catalysis to orchestrate key elementary steps in the catalytic cycle that require conformational flexibility in a manner that is difficult to accomplish with traditional strongly coordinating directing groups. This benzothiazole thioether, (BT)S, directing group can be used to promote oxidative Heck reactivity of internal alkenes providing a wide range of products in moderate to high yields. To demonstrate the broad applicability of this directing group, arene C–H olefination was also successfully developed. Reaction progress kinetic analysis provides insights into the role of the directing group in each reaction, which is supplemented with computational data for the oxidative Heck reaction. Furthermore, this (BT)S directing group can be transformed into a number of synthetically useful functional groups, including a sulfone for Julia olefination, allowing it to serve as a “masked olefin” directing group in synthetic planning. In order to demonstrate this synthetic utility, natural products (+)-salvianolic acid A and salvianolic acid F are formally synthesized using the (BT)S directed C–H olefination as the key step.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ariadna Recasens ◽  
Sean J. Humphrey ◽  
Michael Ellis ◽  
Monira Hoque ◽  
Ramzi H. Abbassi ◽  
...  

AbstractBoth tumour suppressive and oncogenic functions have been reported for dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Herein, we performed a detailed investigation to delineate the role of DYRK1A in glioblastoma. Our phosphoproteomic and mechanistic studies show that DYRK1A induces degradation of cyclin B by phosphorylating CDC23, which is necessary for the function of the anaphase-promoting complex, a ubiquitin ligase that degrades mitotic proteins. DYRK1A inhibition leads to the accumulation of cyclin B and activation of CDK1. Importantly, we established that the phenotypic response of glioblastoma cells to DYRK1A inhibition depends on both retinoblastoma (RB) expression and the degree of residual DYRK1A activity. Moderate DYRK1A inhibition leads to moderate cyclin B accumulation, CDK1 activation and increased proliferation in RB-deficient cells. In RB-proficient cells, cyclin B/CDK1 activation in response to DYRK1A inhibition is neutralized by the RB pathway, resulting in an unchanged proliferation rate. In contrast, complete DYRK1A inhibition with high doses of inhibitors results in massive cyclin B accumulation, saturation of CDK1 activity and cell cycle arrest, regardless of RB status. These findings provide new insights into the complexity of context-dependent DYRK1A signalling in cancer cells.


2019 ◽  
Vol 10 (9) ◽  
pp. 2643-2652 ◽  
Author(s):  
Shababa Selim ◽  
Laia Francàs ◽  
Miguel García-Tecedor ◽  
Sacha Corby ◽  
Chris Blackman ◽  
...  

Unveiling the role of applied bias on the charge carrier dynamics in the WO3/BiVO4 junction during water oxidation.


Sign in / Sign up

Export Citation Format

Share Document