dual specificity
Recently Published Documents


TOTAL DOCUMENTS

1198
(FIVE YEARS 252)

H-INDEX

83
(FIVE YEARS 9)

2022 ◽  
Vol 119 (3) ◽  
pp. e2113649119
Author(s):  
Debabrata Das ◽  
Jacob Seemann ◽  
David Greenstein ◽  
Tim Schedl ◽  
Swathi Arur

The fidelity of a signaling pathway depends on its tight regulation in space and time. Extracellular signal-regulated kinase (ERK) controls wide-ranging cellular processes to promote organismal development and tissue homeostasis. ERK activation depends on a reversible dual phosphorylation on the TEY motif in its active site by ERK kinase (MEK) and dephosphorylation by DUSPs (dual specificity phosphatases). LIP-1, a DUSP6/7 homolog, was proposed to function as an ERK (MPK-1) DUSP in the Caenorhabditis elegans germline primarily because of its phenotype, which morphologically mimics that of a RAS/let-60 gain-of-function mutant (i.e., small oocyte phenotype). Our investigations, however, reveal that loss of lip-1 does not lead to an increase in MPK-1 activity in vivo. Instead, we show that loss of lip-1 leads to 1) a decrease in MPK-1 phosphorylation, 2) lower MPK-1 substrate phosphorylation, 3) phenocopy of mpk-1 reduction-of-function (rather than gain-of-function) allele, and 4) a failure to rescue mpk-1–dependent germline or fertility defects. Moreover, using diverse genetic mutants, we show that the small oocyte phenotype does not correlate with increased ectopic MPK-1 activity and that ectopic increase in MPK-1 phosphorylation does not necessarily result in a small oocyte phenotype. Together, these data demonstrate that LIP-1 does not function as an MPK-1 DUSP in the C. elegans germline. Our results caution against overinterpretation of the mechanistic underpinnings of orthologous phenotypes, since they may be a result of independent mechanisms, and provide a framework for characterizing the distinct molecular targets through which LIP-1 may mediate its several germline functions.


2022 ◽  
Vol 23 (1) ◽  
pp. 517
Author(s):  
Soee Kim ◽  
Min Kim ◽  
Jung-Suk Sung

Toluene diisocyanate (TDI), a major intermediate agent used in the manufacturing industry, causes respiratory symptoms when exposed to the human body. In this study, we aimed to determine the molecular mechanism of TDI toxicity. To investigate the impact of TDI exposure on global gene expression, we performed transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) after TDI treatment. Differentially expressed genes (DEGs) were sorted and used for clustering and network analysis. Among DEGs, dual-specificity phosphatase 6 (DUSP6) was one of the genes significantly changed by TDI exposure. To verify the expression level of DUSP6 and its effect on lung cells, the mRNA and protein levels of DUSP6 were analyzed. Our results showed that DUSP6 was dose-dependently upregulated by TDI treatment. Thereby, the phosphorylation of ERK1/2, one of the direct inhibitory targets of DUSP6, was decreased. TDI exposure also increased the mRNA level of p53 along with its protein and activity which trans-activates DUSP6. Since TRPA1 is known as a signal integrator activated by TDI, we analyzed the relevance of TRPA1 receptor in DUSP6 regulation. Our data revealed that up-regulation of DUSP6 mediated by TDI was blocked by a specific antagonist against TRPA1. TDI exposure attenuated the apoptotic response, which suggests that it promotes the survival of cancerous cells. In conclusion, our results suggest that TDI induces DUSP6 and p53, but attenuates ERK1/2 activity through TRPA1 receptor activation, leading to cytotoxicity.


Author(s):  
Zahra Zandi ◽  
Bahareh Kashani ◽  
Zivar Alishahi ◽  
Atieh Pourbagheri-Sigaroodi ◽  
Fatemeh Esmaeili ◽  
...  

2021 ◽  
Author(s):  
Ramar Vanajothi ◽  
Sundaresan Bhavaniramya ◽  
Muthu Umadevi ◽  
Rajendran Vijayakumar ◽  
Yaser E. Alqurashi ◽  
...  

Abstract Cancer is a major health problem worldwide and one of the leading death-causing diseases. Mirk (Minibrain-related kinase is a member of the dual-specificity tyrosine-phosphorylation-regulated kinase (Dyrk) family that is highly upregulated in various solid tumors and mediates cell survival including lung cancer. Mirk effectively increases the expression of a series of antioxidant genes, which scavenge the reactive oxygen species and stabilize the p27kip1 that maintain the viability of the quiescent cancer cell and also mediates the cell cycle and survival of cancer cells by influencing the MAPK/ERK signaling pathway. Hence, Mirk acts as a novel therapeutic target for cancer prevention. Owing to the unavailability of the three-dimensional structure of Mirk, in the present study, we have modeled the 3D structure of Mirk, based on the crystal structure of Dyrk1a as a template, and subsequently used it as a target for virtual screening and molecular docking against a small molecule database. Based on the visual inspection, four best hits such as Chembridge_ID 7768949, 7771055, 7758866, and 7764195 have high binding affinity, good docking score, and pharmacokinetic properties were shortlisted. Further, the dynamic stability of lead molecules with modeled Mirk/Dyrk1B was evaluated using 10 ns molecular dynamics simulation approach. The four hit molecules exhibited good and stable binding complex in the binding pocket of the target protein. Collectively the finding of this study suggested that the identified molecules may serve as potential effective anti-cancer inhibitors for cancer prevention.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3538
Author(s):  
Janka Borbála Gém ◽  
Kinga Bernadett Kovács ◽  
Laura Szalai ◽  
Gyöngyi Szakadáti ◽  
Edit Porkoláb ◽  
...  

Activation of the type I angiotensin receptor (AT1-R) in vascular smooth muscle cells (VSMCs) plays a crucial role in the regulation of blood pressure; however, it is also responsible for the development of pathological conditions such as vascular remodeling, hypertension and atherosclerosis. Stimulation of the VSMC by angiotensin II (AngII) promotes a broad variety of biological effects, including gene expression changes. In this paper, we have taken an integrated approach in which an analysis of AngII-induced gene expression changes has been combined with the use of small-molecule inhibitors and lentiviral-based gene silencing, to characterize the mechanism of signal transduction in response to AngII stimulation in primary rat VSMCs. We carried out Affymetrix GeneChip experiments to analyze the effects of AngII stimulation on gene expression; several genes, including DUSP5, DUSP6, and DUSP10, were identified as upregulated genes in response to stimulation. Since various dual-specificity MAPK phosphatase (DUSP) enzymes are important in the regulation of mitogen-activated protein kinase (MAPK) signaling pathways, these genes have been selected for further analysis. We investigated the kinetics of gene-expression changes and the possible signal transduction processes that lead to altered expression changes after AngII stimulation. Our data shows that the upregulated genes can be stimulated through multiple and synergistic signal transduction pathways. We have also found in our gene-silencing experiments that epidermal growth factor receptor (EGFR) transactivation is not critical in the AngII-induced expression changes of the investigated genes. Our data can help us understand the details of AngII-induced long-term effects and the pathophysiology of AT1-R. Moreover, it can help to develop potential interventions for those symptoms that are induced by the over-functioning of this receptor, such as vascular remodeling, cardiac hypertrophy or atherosclerosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sashi Kant ◽  
Vijay Pancholi

Streptococcus pyogenes (Group A Streptococcus, GAS) genomes do not contain a gene encoding a typical bacterial-type tyrosine kinase (BY-kinase) but contain an orphan gene-encoding protein Tyr-phosphatase (SP-PTP). Hence, the importance of Tyr-phosphorylation is underappreciated and not recognized for its role in GAS pathophysiology and pathogenesis. The fact that SP-PTP dephosphorylates Abl-tyrosine kinase-phosphorylated myelin basic protein (MBP), and SP-STK (S. pyogenes Ser/Thr kinase) also autophosphorylates its Tyr101-residue prompted us to identify a putative tyrosine kinase and Tyr-phosphorylation in GAS. Upon a genome-wide search of kinases possessing a classical Walker motif, we identified a non-canonical tyrosine kinase M5005_Spy_1476, a ∼17 kDa protein (153 aa) (SP-TyK). The purified recombinant SP-TyK autophosphorylated in the presence of ATP. In vitro and in vivo phosphoproteomic analyses revealed two key phosphorylated tyrosine residues located within the catalytic domain of SP-TyK. An isogenic mutant lacking SP-TyK derived from the M1T1 strain showed a retarded growth pattern. It displayed defective cell division and long chains with multiple parallel septa, often resulting in aggregates. Transcriptomic analysis of the mutant revealed 287 differentially expressed genes responsible for GAS pathophysiology and pathogenesis. SP-TyK also phosphorylated GAS CovR, WalR, SP-STP, and SDH/GAPDH proteins with dual specificity targeting their Tyr/Ser/Thr residues as revealed by biochemical and mass-spectrometric-based phosphoproteomic analyses. SP-TyK-phosphorylated CovR bound to PcovR efficiently. The mutant displayed sustained release of IL-6 compared to TNF-α during co-culturing with A549 lung cell lines, attenuation in mice sepsis model, and significantly reduced ability to adhere to and invade A549 lung cells and form biofilms on abiotic surfaces. SP-TyK, thus, plays a critical role in fine-tuning the regulation of key cellular functions essential for GAS pathophysiology and pathogenesis through post-translational modifications and hence, may serve as a promising target for future therapeutic developments.


2021 ◽  
pp. 1-13
Author(s):  
Haiyang Li ◽  
Jiachuan Xiong ◽  
Yu Du ◽  
Yinghui Huang ◽  
Jinghong Zhao

<b><i>Background:</i></b> Dual-specificity phosphatases (DUSPs) belong to the family of protein tyrosine phosphatases, which can dephosphorylate both serine/threonine and tyrosine residues. During the past decades, DUSPs have been implicated in various physiological and pathological activities. Besides mitogen-activated protein kinases (MAPKs) as the main substrates, other protein and nonprotein substrates can also be dephosphorylated by DUSPs. Aberrant regulations of DUSPs have been found in various diseases such as cancer, neurological disorders, and kidney diseases, suggesting the involvement of DUSPs in the pathogenesis of diseases. <b><i>Summary:</i></b> In this review, we summarize the general characteristics of DUSPs and the research progress made in the field of kidney diseases, including diabetic nephropathy, hypertensive nephropathy, chronic kidney disease, acute kidney injury, and lupus nephritis. As the main biochemical function of DUSPs is to dephosphorylate MAPKs activity, decreased DUSPs are found in kidney disease models, whereas forced DUSPs expression reverses the disease presentation, which was proved by using transgenic or gene knockout model. <b><i>Key Messages:</i></b> Mounting evidence demonstrates that DUSPs have essential physiological and pathological functions in kidney disease. Fully understanding the functions and mechanisms of DUSPs in kidney disease contributes to their clinical application in translation medicine.


Sign in / Sign up

Export Citation Format

Share Document