ChemInform Abstract: A PI-ALLYL TO SIGMA-ALLYL REARRANGEMENT, THE ISOLATION OF (DI-PI-CYCLOPENTADIENYL)(SIGMA-ALLYL)(CARBON DISULPHIDE)NIOBIUM AND ITS REACTION WITH ALKYL HALIDES

1973 ◽  
Vol 4 (39) ◽  
pp. no-no
Author(s):  
G. W. A. FOWLES ◽  
L. S. PU ◽  
D. A. RICE
2020 ◽  
Author(s):  
Julian West ◽  
Alexandros S Pollatos ◽  
Radha Bam
Keyword(s):  

1883 ◽  
Vol 16 (416supp) ◽  
pp. 6641-6641
Author(s):  
S. V. Wroblewski ◽  
K Olszewski
Keyword(s):  

2020 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Cassandra R. Youshaw ◽  
Mingbin Yuan ◽  
Michael B. Geherty ◽  
...  

The first iron-catalyzed three-component cross-coupling of unactivated olefins with alkyl halides and Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles, alkyl halides, and unactivated olefins bearing diverse functional groups to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.


Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Mingbin Yuan ◽  
Chris Acha ◽  
Michael B. Geherty ◽  
...  

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.


2013 ◽  
Vol 13 (6) ◽  
pp. 802-813 ◽  
Author(s):  
Qun Qian ◽  
Zhenhua Zang ◽  
Yang Chen ◽  
Weiqi Tong ◽  
Hegui Gong

1983 ◽  
Vol 48 (3) ◽  
pp. 722-734
Author(s):  
Martin Koval

The flame ionisation detector response to C6-C11 aliphatic hydrocarbon solutions in carbon disulphide in the concentration range between 1.3-9.5 mg ml-1 retained lineary despite the excess of solvent entering the detector simultaneously with the analyte. Pure carbon disulphide exhibited a small positive detector response which did not interfere in calibration procedure and which, under certain GC conditions, inverted to negative values. This response was not proportional to the injected volume and was strongly influenced by the column temperature and/or bleed. On the basis of these findings, a method compatible with the widely used charcoal tube carbon disulphide desorption procedure was developed and evaluated. It consists of static desorption of the sum of aliphatic alkanes and cycloalkanes from the activated charcoal after which an internal standard is added to the supernatant eluate. The resulting carbon disulphide solution is analysed on a highly polar stationary phase 1,2,3-tris(2-cyanoethoxy)propane where the solvent and the analyte coelute in a single peak, the height of which is practically proportional to the sum of alkanes and cycloalkanes present. This also makes determinations of other substances present in the sample more simple. The field test of the proposed method yielded values comparable in precision and accuracy with a control infrared spectrophotometric method.


1981 ◽  
Vol 46 (6) ◽  
pp. 1332-1347 ◽  
Author(s):  
Martin Koval

The described method uses activated charcoal sampling tubes for air sampling. Adsorbed compounds are eluted by the static desorption procedure with 1 ml of carbon disulphide, 0.5 ml of the supernatant is filtered off and, after internal standard addition, analysed on a gas chromatograph. Using synthetic calibration mixtures of model organic compounds with air, cumulative sampling and desorption efficiencies for 24 substances were determined for concentration ranges and sample volumes according to current Czechoslovak hygienic standards. Experimental results were treated with the single factor analysis of variance and the precision of the described procedure was estimated for the studied model compounds on the basis of residual sums of squares. Calculated values of cumulative sampling and desorption efficiencies and their precisions were compared with available published data and an acceptable agreement was found. In addition to that, cumulative sampling and desorption efficiencies were also found to be significantly correlated to molar volumes and other related molecular properties for some types of compounds.


Sign in / Sign up

Export Citation Format

Share Document