Design and Development of Fe-Catalyzed Intra- and Intermolecular Carbofunctionalization of Vinyl Cyclopropanes

Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Mingbin Yuan ◽  
Chris Acha ◽  
Michael B. Geherty ◽  
...  

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.

2019 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Mingbin Yuan ◽  
Chris Acha ◽  
Michael B. Geherty ◽  
...  

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.


2020 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Cassandra R. Youshaw ◽  
Mingbin Yuan ◽  
Michael B. Geherty ◽  
...  

The first iron-catalyzed three-component cross-coupling of unactivated olefins with alkyl halides and Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles, alkyl halides, and unactivated olefins bearing diverse functional groups to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.


2020 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Cassandra R. Youshaw ◽  
Mingbin Yuan ◽  
Michael B. Geherty ◽  
...  

The first iron-catalyzed three-component cross-coupling of unactivated olefins with alkyl halides and Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles, alkyl halides, and unactivated olefins bearing diverse functional groups to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.


2020 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Cassandra R. Youshaw ◽  
Mingbin Yuan ◽  
Michael B. Geherty ◽  
...  

The first iron-catalyzed three-component cross-coupling of unactivated olefins with alkyl halides and Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles, alkyl halides, and unactivated olefins bearing diverse functional groups to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.


2018 ◽  
Vol 9 (8) ◽  
pp. 2195-2211 ◽  
Author(s):  
Takanori Iwasaki ◽  
Asuka Fukuoka ◽  
Wataru Yokoyama ◽  
Xin Min ◽  
Ichiro Hisaki ◽  
...  

The detailed reaction mechanism of anionic Ni complex-promoted C–C bond forming reactions was clarified by experimental and theoretical methods.


2004 ◽  
Vol 126 (12) ◽  
pp. 3686-3687 ◽  
Author(s):  
Masaharu Nakamura ◽  
Keiko Matsuo ◽  
Shingo Ito ◽  
Eiichi Nakamura

ChemInform ◽  
2015 ◽  
Vol 46 (33) ◽  
pp. no-no
Author(s):  
Bao-Xin Du ◽  
Zheng-Jun Quan ◽  
Yu-Xia Da ◽  
Zhang Zhang ◽  
Xi-Cun Wang

Synlett ◽  
2017 ◽  
Vol 28 (13) ◽  
pp. 1558-1563 ◽  
Author(s):  
Aiwen Lei ◽  
Atul Singh ◽  
Hong Yi ◽  
Guoting Zhang ◽  
Changliang Bian ◽  
...  

We have developed a photoinduced oxidative cross-coupling of thiophenols with alcohols for O–S bond formation. The protocol uses visible light, a metal-free photocatalyst, and oxygen as the oxidant for the selective synthesis of alkyl benzenesulfonates; no ligand co-additive is necessary. Mechanistic studies suggested that the disulfide and alkyl benzenesulfinate are involved as intermediates and that the transformation proceeds by a radical pathway.


Sign in / Sign up

Export Citation Format

Share Document