ChemInform Abstract: THE KINETICS OF THE HYDROLYSIS OF ACETIC ANHYDRIDE AND THE REACTION OF 4-NITROPHENYL ACETATE WITH IMIDAZOLE IN AQUEOUS-ORGANIC MIXED SOLVENTS

1974 ◽  
Vol 5 (42) ◽  
pp. no-no
Author(s):  
D. G. OAKENFULL
1972 ◽  
Vol 25 (4) ◽  
pp. 777 ◽  
Author(s):  
PT McTigue ◽  
AR Watkins

The kinetics of acid hydrolysis of a number of aliphatic acetals have been studied in dimethyl sulphoxide-water and dioxan-water mixtures. Where possible, experimentally measured medium activity coefficients for the acetals in the solvent systems have been used in order to calculate the transition state activity coefficients as a function of solvent composition. These activity coefficients are compared with those calculated for the transition states of other hydrolytic reactions, and with the known activity coefficients of some stable ions. The results show no features inconsistent with the assumptions of transition state theory.


1978 ◽  
Vol 56 (15) ◽  
pp. 2053-2057 ◽  
Author(s):  
El-Hussieny M. Diefallah ◽  
A. M. El-Nadi

The kinetics of the alkaline decarboxylation of trichloroacetate ion in ethanol–water solutions have been studied over the temperature range 35.0 to 70.0 °C. The rate of reaction is first order with respect to the trichloroacetate ion and is independent of the concentration of the hydroxide ion. The reactivity is enhanced by increasing the concentration of ethanol in the water–ethanol solutions and the rate of reaction varies with ethanol addition in a nonlinear manner. The rate of reaction increases with the reciprocal of the dielectric constant of the medium and the plot of log k vs. 1/D is approximately linear for solvent mixtures with less than about 0.7 water mole fraction but is strongly curved towards the pure water end. The activation parameters for the reaction show a regular increase in the solvent composition range 0.3 to 1.0 water mole fraction. The results are discussed in terms of the influence of solvent internal pressure and polarity on reactivity and of the increased amount of hydrogen-bonded structure in the water-rich solutions.


1974 ◽  
Vol 27 (7) ◽  
pp. 1423 ◽  
Author(s):  
DG Oakenfull

With the general aim of elucidating the role of water structure in the kinetics of hydrolysis, a comparative study has been made of the kinetics of the hydrolysis of acetic anhydride and the reaction of 4-nitrophenyl acetate with imidazole in mixtures of water with ethanol, t-butyl alcohol, dimethyl sulphoxide and dioxan. Both rate constants were always reduced by the addition of organic solvent. Transition state activity coefficients were measured for both reactions in dimethyl sulphoxide-water mixtures and compared with the activity coefficient of phenylalanine (a model zwitterionic transition state). Activation parameters were measured for the hydrolysis of aceticanhydride in t-butyl alcohol-water and dimethyl sulphoxide-water mixtures. Semilogarithmic plots of rate constant against Winstein's Y-value were non-linear for some of the solvents and this fact, coupled with the effect of dimethyl sulphoxide on the transition state activity coefficients, leads to the conclusion that specific interactions of the solvent with the reactants and with the transition state could be of major importance in controlling the reaction rate.There was no obvious relationship between the effect of an organic solvent on the kinetics of hydrolysis of acetic anhydride and its effect on the structure of water.


2021 ◽  
Vol 166 ◽  
pp. 29-39
Author(s):  
Jessica M. Garcia ◽  
Igor R.B. Bernardino ◽  
Vinicius Calasans ◽  
Reinaldo Giudici

1971 ◽  
Vol 24 (12) ◽  
pp. 2547 ◽  
Author(s):  
DG Oakenfull

The kinetics of the hydrolysis of acetic anhydride have been investigated in concentrated salt solutions at 20�. Sine salts were used in concentrations of up to 5 mol 1-1; all inhibited the reaction. ��� The salt effect was resolved into its component effects on the reactants and the transition state by use of the Bronsted-Bjerrum equation to calculate transition state activity coefficients from rate constants and measured activity coefficients of acetic anhydride. The effect of a salt on the free energy of the reactants was always significant and in some cases it was the major component of the effect of the salt on the free energy of activation. The enthalpy and entropy of transfer from water to 1 mol l-1 sodium chloride, for both acetic anhydride and the transition state, show the enthalpy-entropy compensation effect which is typical of aqueous solutions. ��� These salt effects are considered to be part of the general phenomenon of the effect of salts on the activity coefficients of non-electrolytes. The inhibition is not caused by formation of a complex between salt and acetic anhydride. Rate constants could not be correlated with dielectric constant and ionic strength, using Gold's equation, and changes in water structure which occur in these salt solutions were shown to have no direct effect on the reaction rate.


ChemInform ◽  
1988 ◽  
Vol 19 (36) ◽  
Author(s):  
M. A. MOUSA ◽  
E.-M. DIEFALLAH ◽  
A. E. F. SHAABAN ◽  
M. A. AZAB

1981 ◽  
Vol 59 (8) ◽  
pp. 1208-1211 ◽  
Author(s):  
El-Hussieny M. Diefallah ◽  
Mohamed A. Ashy ◽  
Ahmed O. Baghlaf

The kinetics of the alkaline solvolysis of dichloroacetate ion in water–methanol solutions have been studied in the temperature range of 50.0 to 65.0 °C and the influence of solvent variation on reaction rate has been examined in terms of changes in the activation parameters. The activation parameters ΔH≠ and ΔS≠ for the solvolysis reaction showed a minimum at about 0.8 water mole fraction. The significance of the results was discussed in view of the electrostatic theory and the changing of solvent structure.


Sign in / Sign up

Export Citation Format

Share Document