Kinetics of the hydrolysis of acetic anhydride using reaction calorimetry: effects of strong acid catalyst and salts

2021 ◽  
Vol 166 ◽  
pp. 29-39
Author(s):  
Jessica M. Garcia ◽  
Igor R.B. Bernardino ◽  
Vinicius Calasans ◽  
Reinaldo Giudici
1974 ◽  
Vol 27 (7) ◽  
pp. 1423 ◽  
Author(s):  
DG Oakenfull

With the general aim of elucidating the role of water structure in the kinetics of hydrolysis, a comparative study has been made of the kinetics of the hydrolysis of acetic anhydride and the reaction of 4-nitrophenyl acetate with imidazole in mixtures of water with ethanol, t-butyl alcohol, dimethyl sulphoxide and dioxan. Both rate constants were always reduced by the addition of organic solvent. Transition state activity coefficients were measured for both reactions in dimethyl sulphoxide-water mixtures and compared with the activity coefficient of phenylalanine (a model zwitterionic transition state). Activation parameters were measured for the hydrolysis of aceticanhydride in t-butyl alcohol-water and dimethyl sulphoxide-water mixtures. Semilogarithmic plots of rate constant against Winstein's Y-value were non-linear for some of the solvents and this fact, coupled with the effect of dimethyl sulphoxide on the transition state activity coefficients, leads to the conclusion that specific interactions of the solvent with the reactants and with the transition state could be of major importance in controlling the reaction rate.There was no obvious relationship between the effect of an organic solvent on the kinetics of hydrolysis of acetic anhydride and its effect on the structure of water.


2012 ◽  
Vol 550-553 ◽  
pp. 484-487 ◽  
Author(s):  
Chong Wen Jiang ◽  
Can Chen Bai ◽  
Hao Xiao

This study focuses on kinetics of straw hydrolysis using sulfuric acid catalyst to produce fermentable sugars. The result shows the degradation of sugars is encountered during the hydrolysis of straw biomass. A consecutive first-order reactions kinetic model is proposed and the kinetic model well agrees with the experimental data. It turns out that rate of sugar formation and degradation is small at lower experimental temperature. The reactions rates constant k1 including the formation of sugar begins to increase rapidly when the Fe2+concentration increases from 0.125 to 0.500molL-1. However, the rate constant k2 relevant with the degradation of sugar varies unsensibly below 0.375molL-1 Fe2+and it is accelerated as the Fe2+concentration increases to 0.500molL-1. Thus the optimum yield is obtained at 0.375molL-1 Fe2+concentration.


1971 ◽  
Vol 24 (12) ◽  
pp. 2547 ◽  
Author(s):  
DG Oakenfull

The kinetics of the hydrolysis of acetic anhydride have been investigated in concentrated salt solutions at 20�. Sine salts were used in concentrations of up to 5 mol 1-1; all inhibited the reaction. ��� The salt effect was resolved into its component effects on the reactants and the transition state by use of the Bronsted-Bjerrum equation to calculate transition state activity coefficients from rate constants and measured activity coefficients of acetic anhydride. The effect of a salt on the free energy of the reactants was always significant and in some cases it was the major component of the effect of the salt on the free energy of activation. The enthalpy and entropy of transfer from water to 1 mol l-1 sodium chloride, for both acetic anhydride and the transition state, show the enthalpy-entropy compensation effect which is typical of aqueous solutions. ��� These salt effects are considered to be part of the general phenomenon of the effect of salts on the activity coefficients of non-electrolytes. The inhibition is not caused by formation of a complex between salt and acetic anhydride. Rate constants could not be correlated with dielectric constant and ionic strength, using Gold's equation, and changes in water structure which occur in these salt solutions were shown to have no direct effect on the reaction rate.


1963 ◽  
Vol 17 ◽  
pp. 1417-1425 ◽  
Author(s):  
Jouko Koskikallio ◽  
Preben C. Mörk ◽  
Björn Jenssen ◽  
J. S. Brimacombe ◽  
M. C. Cook

1960 ◽  
Vol 14 ◽  
pp. 1343-1348 ◽  
Author(s):  
Jouko Koskikallio ◽  
H. Flood ◽  
S. Rundqvist ◽  
E. Varde ◽  
Gertrud Westin

1979 ◽  
Vol 44 (10) ◽  
pp. 3023-3032 ◽  
Author(s):  
Helmut Pischel ◽  
Antonín Holý ◽  
Günther Wagner

1-(Carboxymethyl)cytosine (Ia), 1-(5-O-carboxymethyl-β-D-arabinofuranosyl)cytosine (IIa) and 5'-O-carboxylmethylcytidine (IIIa) were transformed by treatment with acetic anhydride and 4-dimethylaminopyridine to the peracetyl derivatives Ib-IIIb. These products reacted with p-nitrophenol in the presence of N, N'-dicyclohexylcarbodiimide to give the activated esters Ic-IIIc which on reaction with ammonia, dimethylamine or 2-aminoethanol afforded the corresponding carboxamides Id-IIId, IIe,f. Reactions of Ic and IIc with human serum albumin and bovine γ-globulin at pH 9.2, followed by hydrolysis of the N- or O-acetyl groups at pH 9.5, gave 50% up to 64% yields of the respective conjugates Ig, IIg and Ih, IIh.


Sign in / Sign up

Export Citation Format

Share Document