ChemInform Abstract: ELECTROPHILIC REACTIONS OF THE CYANO GROUP. XI. NOVEL SYNTHESIS OF N-ALKYLATED LACTAMS

1977 ◽  
Vol 8 (17) ◽  
pp. no-no
Author(s):  
E. GROCHOWSKI ◽  
T. BOLESLAWSKA
2018 ◽  
Vol 15 (4) ◽  
pp. 552-565 ◽  
Author(s):  
Nitin Kore ◽  
Pavel Pazdera

Aim and Objective: The aim of our work is to demonstrate catalytic application of our previously reported simple Cu(I) ion supported on weakly acidic polyacrylate resin for Azide-Alkyne cycloaddition (CuAAC), Azide-Nitrile cycloaddition and in synthesis of 1-azido-4-methoxybenzene. Material and Method: To investigate the catalytic ability of title Cu(I) catalyst we performed the reaction of different aryl azide with a broader spectrum of different terminal alkyne and nitrile compounds. Results: The title supported Cu(I) catalyzes cycloaddition reactions of aryl azide with aliphatic, aromatic, and heterocyclic terminal alkynes and corresponding 1,4-disubstituted 1,2,3-triazoles were obtained almost in the quantitative yields. The cycloaddition reactions of aryl azide with nitriles consisting α-hydrogen on carbon attached to cyano group under catalytic action of the title supported Cu(I) ended up with the formation of 1,4- disubstituted 1,2,3-triazol-5-amines in quantitative yields. The title catalyst found to be active for nucleophilic substitution of aide group (-N3) to 4-Iodoanisole. Conclusion: It was found that both studied Azide-Alkyne cycloaddition and Azide-Nitrile cycloaddition syntheses are regioselective and quantitative in yield. The title catalyst used is economical, easily preparable, separable, and recyclable. Therefore, the studied syntheses may be regarded as environmentally clean and green processes.


2000 ◽  
Author(s):  
Thorsten Schroer ◽  
Karl O. Christe
Keyword(s):  

2020 ◽  
Vol 17 (5) ◽  
pp. 396-403
Author(s):  
Nalla Krishna Rao ◽  
Tentu Nageswara Rao ◽  
Botsa Parvatamma ◽  
Y. Prashanthi ◽  
Ravi Kumar Cheedarala

Aims: A series of six 4-benzylidene-2-((1-phenyl-3,4-dihydro isoquinoline-2(1H)-yl)methyloxazol- 5(4H)-one derivatives were synthesized by condensation of substituted aryl aldehydes with 2-(2-(1-phenyl-3,4- dihydro isoquinoline-2(1H)-acetamido)acetic acid in the presence of sodium acetate, acetic anhydride and zinc oxide as catalysts. Background: Novel Synthesis of 4-Benzylidene-2-((1-phenyl-3,4-dihy droisoquinoline-2(1H)-yl)methyl)oxazol- 5(4H)-one derivatives using 1,2,3,Tetrahydroisoquinoline and their antimicrobial activity. Objective: The title compounds can be synthesized from 1,2,3,4-tetrahydroisoquinoline. Methods: The target molecules, i.e., 4-benzylidene-2-((1-phenyl-3, 4-dihydro isoquinoline-2(1H)-yl) methyl) oxazol-5(4H)-one derivatives (8a-8f) have been synthesized from 1,2,3,4-tetrahydroisoquinoline which was prepared from benzoic acid in few steps. Results: All the six compounds were evaluated based on advanced spectral data (1H NMR, 13C NMR & LCMS), and the chemical structures of all compounds were determined by elemental analysis. Conclusion: Antibacterial activity of the derivatives was examined for the synthesized compounds and results indicate that compound with bromine substitution has a good activity profile.


1967 ◽  
Vol 20 (8) ◽  
pp. 1663 ◽  
Author(s):  
JFK Wilshire

2-Fluoro-5-nitrobenzonitrile, an analogue of 1-fluoro-2,4- dinitrobenzene, in which the 2-nitro group has been replaced by a cyano group, has been prepared and made to react with several amines, amino acids, and NH-heteroaromatic compounds. The proton magnetic resonance spectra of some of the resultant N-(2-cyano-4-nitrophenyl) derivatives were compared with the spectra of the corresponding N-(2,4- dinitrophenyl) derivatives and furnish further evidence that the ortho nitro group of the latter derivatives is rotated out of the plane of the aromatic nucleus.


2021 ◽  
Vol 03 (02) ◽  
pp. 090-096
Author(s):  
Yusuke Ishigaki ◽  
Kota Asai ◽  
Takuya Shimajiri ◽  
Tomoyuki Akutagawa ◽  
Takanori Fukushima ◽  
...  

The crystal structures of a series of tetracyanonaphthoquinodimethanes fused with a selenadiazole or thiadiazole ring revealed that their molecular packing is determined mainly by two intermolecular interactions: chalcogen bond (ChB) and weak hydrogen bond (WHB). ChB between Se and a cyano group dictates the packing of selenadiazole derivatives, whereas the S-based ChB is much weaker and competes with WHB in thiadiazole analogues. This difference can be explained by different electrostatic potentials as revealed by density functional theory calculations. A proper molecular design that weakens WHB can change the contribution of ChB in determining the crystal packing of thiadiazole derivatives.


Sign in / Sign up

Export Citation Format

Share Document