ChemInform Abstract: (ETHYLENE)ETHYLNICKEL CYANIDE COMPLEX INTERMEDIATE IN CATALYTIC HYDROCYANATION OF ETHYLENE. REDUCTIVE ELIMINATION BY AN ASSOCIATIVE PROCESS

1985 ◽  
Vol 16 (19) ◽  
Author(s):  
R. J. MCKINNEY ◽  
D. C. ROE
2019 ◽  
Author(s):  
Alejandra Gomez-Torres ◽  
J. Rolando Aguilar-Calderón ◽  
Carlos Saucedo ◽  
Aldo Jordan ◽  
Alejandro J. Metta-Magaña ◽  
...  

<p>The masked Ti(II) synthon (<sup>Ket</sup>guan)(<i>η</i><sup>6</sup>-Im<sup>Dipp</sup>N)Ti (<b>1</b>) oxidatively adds across thiophene to give ring-opened (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti[<i>κ</i><sup>2</sup>-<i>S</i>(CH)<sub>3</sub><i>C</i>H] (<b>2</b>). Complex <b>2</b> is photosensitive, and upon exposure to light, reductively eliminates thiophene to regenerate <b>1</b> – a rare example of early-metal mediated oxidative-addition/reductive-elimination chemistry. DFT calculations indicate strong titanium π-backdonation to the thiophene π*-orbitals leads to the observed thiophene ring opening across titanium, while a proposed photoinduced LMCT promotes the reverse thiophene elimination from <b>2</b>. Finally, pressurizing solutions of <b>2 </b>with H<sub>2</sub> (150 psi) at 80 °C leads to the hydrodesulfurization of thiophene to give the Ti(IV) sulfide (<sup>Ket</sup>guan)(Im<sup>Dipp</sup>N)Ti(S) (<b>3</b>) and butane. </p>


2019 ◽  
Author(s):  
Min Zhou ◽  
Jet Tsien ◽  
Tian Qin

<p>Herein we report a sulfur (IV) mediated cross-coupling for facile synthesis of heteroaromatic substrates. Addition of heteroaryl nucleophiles onto a simple, readily-accessible alkyl sulfinyl (IV) chloride allows formation of a trigonal bipyramidal sulfurane intermediate. Reductive elimination therefrom provides bis-heteroaryl products in a practical and efficient fashion. <br></p>


2019 ◽  
Author(s):  
Randolph Escobar ◽  
Jeffrey Johannes

<div>While carbon-heteroatom cross coupling reactions have been extensively studied, many methods are specific and</div><div>limited to a set of substrates or functional groups. Reported here is a method that allows for C-O, C-N and C-S cross coupling reactions under one general methodology. We propose that an energy transfer pathway, in which an iridium photosensitizer produces an excited nickel (II) complex, is responsible for the key reductive elimination step that couples aryl halides to 1° and 2° alcohols, anilines, thiophenols, carbamates and sulfonamides.</div>


1998 ◽  
Vol 63 (5) ◽  
pp. 622-627 ◽  
Author(s):  
Hidetaka Yuge ◽  
Takayoshi Soma ◽  
Takeshi Ken Miyamoto

Crystals of a new clathrate [CuII(hmtd)CuI(CN)3]·CH2Cl2 were afforded from a Me2CO-EtOH-CH2Cl2 solution of a macrocyclic complex CuII(hmtd)CuI(CN)3·2 H2O (hmtd = 5,7,7,12,14,14-hexamethyl- 1,4,8,11-tetraazacyclotetradeca- 4,11-diene). It crystallizes in the monoclinic space group P21/n, a = 7.936(5), b = 18.717(4), c = 17.783(6) Å, β = 98.55(4)°, Z = 4, R = 0.0558 for 1 870 reflections. Unprecedentedly, only one of the three nitrogen-ends of a CuI(CN)3 moiety is coordinated to the square-pyramidal Cu(II) center. The guest CH2Cl2 molecules are captured in the channel between the potlid-shaped [CuII(hmtd)CuI(CN)3] molecules.


2021 ◽  
Author(s):  
Yichen Yu ◽  
Chenxu Wang ◽  
Liqi Wang ◽  
Cai-Li Sun ◽  
Roman Boulatov ◽  
...  

The influence of mechanical force on the rates of model reductive elimination reactions depends on the structure of the force-transducing ligand and provides a measure of geometry changes upon reaching the transition state.


Sign in / Sign up

Export Citation Format

Share Document