ring opening
Recently Published Documents





2022 ◽  
pp. 1-9
Nan Lu ◽  
Hui Liang ◽  
Chengxia Miao ◽  
Xiaozheng Lan ◽  
Ping Qian

The mechanism for DMAP-promoted [4 + 2]-annulation of prop-2-ynylsulfonium with isatoic anhydride is investigated using the M06-2X functional. The reaction comprises isomerization of prop-2-ynylsulfonium in stage 1. Stage 2 includes DMAP-promoted deprotonation, nucleophilic addition, ring opening, and decarboxylation. Three steps of intramolecular cycloaddition, DMAP-promoted protonation, and dealkylation occur in stage 3, generating methylated DMAP and neutral thioether, which undergo double-bond isomerization to yield 3-methylthio-4-quinolone. The ability of DMAP to promote the reaction lies in the barrier decrease for alkyne isomerization, deprotonation/protonation of allenes, and dealkylation as effective bases for transferring protons and methyl groups. The roles of prop-2-ynylsulfonium and isatoic anhydride were demonstrated to be C2 and C4 synthons via Multiwfn analysis on the frontier molecular orbital. An alternative path was also confirmed by the Mayer bond order of the vital transition states.

2022 ◽  
Chandan Giri ◽  
Sarah E. Sisk ◽  
Louis Reisman ◽  
Irshad Kammakakam ◽  
Jason E. Bara ◽  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 466
Vamshi K. Chidara ◽  
Yves Gnanou ◽  
Xiaoshuang Feng

The anionic ring-opening copolymerization (ROCOP) of epoxides, namely of ethylene oxide (EO), with anhydrides (AH) generally produces strictly alternating copolymers. With triethylborane (TEB)-assisted ROCOP of EO with AH, statistical copolymers of high molar mass including ether and ester units could be obtained. In the presence of TEB, the reactivity ratio of EO (rEO), which is normally equal to 0 in its absence, could be progressively raised to values lower than 1 or higher than 1. Conditions were even found to obtain rEO equal or close to 1. Samples of P(EO-co-ester) with minimal compositional drift could be synthesized; upon basic degradation of their ester linkages, these samples afforded poly(ethylene oxide) (PEO) diol samples of narrow molar mass distribution. In other cases where rEO were lower or higher than 1, the PEO diol samples eventually isolated after degradation exhibited a broader distribution of molar masses because of the compositional drift of initial P(EO-co-ester) samples.

2022 ◽  
Vol 13 (1) ◽  
Xiaochao Xia ◽  
Ryota Suzuki ◽  
Tianle Gao ◽  
Takuya Isono ◽  
Toshifumi Satoh

AbstractSwitchable polymerization holds considerable potential for the synthesis of highly sequence-controlled multiblock. To date, this method has been limited to three-component systems, which enables the straightforward synthesis of multiblock polymers with less than five blocks. Herein, we report a self-switchable polymerization enabled by simple alkali metal carboxylate catalysts that directly polymerize six-component mixtures into multiblock polymers consisting of up to 11 blocks. Without an external trigger, the catalyst polymerization spontaneously connects five catalytic cycles in an orderly manner, involving four anhydride/epoxide ring-opening copolymerizations and one L-lactide ring-opening polymerization, creating a one-step synthetic pathway. Following this autotandem catalysis, reasonable combinations of different catalytic cycles allow the direct preparation of diverse, sequence-controlled, multiblock copolymers even containing various hyperbranched architectures. This method shows considerable promise in the synthesis of sequentially and architecturally complex polymers, with high monomer sequence control that provides the potential for designing materials.

2022 ◽  
Nathaniel Bingham ◽  
Qamar Nisa ◽  
Priyanka Gupta ◽  
Neil Young ◽  
Eirini Velliou ◽  

Being non-degradable, vinyl polymers have limited biomedical applicability. Unfortunately, backbone esters incorporated through conventional radical ring-opening methods do not undergo appreciable abiotic hydrolysis under physiologically relevant conditions. Here, PEG acrylate and di(ethylene glycol) acrylamide-based copolymers containing backbone thioesters were prepared through the radical ring-opening copolymerization of the thionolactone dibenzo[c,e]oxepin-5(7H)-thione. The thioesters degraded fully in the presence of 10 mM cysteine at pH 7.4, with the mechanism presumed to involve an irreversible S–N switch. Degradations with N-acetylcysteine and glutathione were reversible through the thiol–thioester exchange polycondensation of R–SC(=O)–polymer–SH fragments with full degradation relying on an increased thiolate:thioester ratio. Treatment with 10 mM glutathione at pH 7.2 (mimicking intracellular conditions) triggered an insoluble–soluble switch of a temperature-responsive copolymer at 37 °C and the release of encapsulated Nile Red (as a drug model) from core-degradable diblock copolymer micelles. Copolymers and their cysteinolytic degradation products were found to be non-cytotoxic, making thioester backbone-functional polymers promising for drug delivery applications.

Sign in / Sign up

Export Citation Format

Share Document